Lifting properties in operator ranges

Autores
Arias, Maria Laura; Corach, Gustavo; Gonzalez, Maria Celeste
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given a bounded positive linear operator A on a Hilbert space H we consider the semi-Hilbertian space (H, <,>_A), where <ℇ, n >_A =< Aℇ,n>. On the other hand, we consider the operator range R(A^1/2) with its canonical Hilbertian structure, denoted by R(A^1/2). In this paper we explore the relationship between different types of operators on (H, <,>_A) with classical subsets of operators on R(A^1/2), like Hermitian, normal, contractions, projections, partial isometries and so on. We extend a theorem by M. G. Krein on symmetrizable operators and a result by M. Mbekhta on reduced minimum modulus.
Fil: Arias, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Gonzalez, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
A-OPERATORS
OPERATOR RANGES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100314

id CONICETDig_78225d2ba8d2371cb74795ef32cc8d1b
oai_identifier_str oai:ri.conicet.gov.ar:11336/100314
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Lifting properties in operator rangesArias, Maria LauraCorach, GustavoGonzalez, Maria CelesteA-OPERATORSOPERATOR RANGEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a bounded positive linear operator A on a Hilbert space H we consider the semi-Hilbertian space (H, <,>_A), where <ℇ, n >_A =< Aℇ,n>. On the other hand, we consider the operator range R(A^1/2) with its canonical Hilbertian structure, denoted by R(A^1/2). In this paper we explore the relationship between different types of operators on (H, <,>_A) with classical subsets of operators on R(A^1/2), like Hermitian, normal, contractions, projections, partial isometries and so on. We extend a theorem by M. G. Krein on symmetrizable operators and a result by M. Mbekhta on reduced minimum modulus.Fil: Arias, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Gonzalez, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaUniversity of Szeged2009-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100314Arias, Maria Laura; Corach, Gustavo; Gonzalez, Maria Celeste; Lifting properties in operator ranges; University of Szeged; Acta Scientiarum Mathematicarum (Szeged); 75; 3; 1-2009; 635-6530001-6969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.acta.hu/acta/home.actioninfo:eu-repo/semantics/altIdentifier/url/http://acta.bibl.u-szeged.hu/16324/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:45:08Zoai:ri.conicet.gov.ar:11336/100314instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:45:09.229CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Lifting properties in operator ranges
title Lifting properties in operator ranges
spellingShingle Lifting properties in operator ranges
Arias, Maria Laura
A-OPERATORS
OPERATOR RANGES
title_short Lifting properties in operator ranges
title_full Lifting properties in operator ranges
title_fullStr Lifting properties in operator ranges
title_full_unstemmed Lifting properties in operator ranges
title_sort Lifting properties in operator ranges
dc.creator.none.fl_str_mv Arias, Maria Laura
Corach, Gustavo
Gonzalez, Maria Celeste
author Arias, Maria Laura
author_facet Arias, Maria Laura
Corach, Gustavo
Gonzalez, Maria Celeste
author_role author
author2 Corach, Gustavo
Gonzalez, Maria Celeste
author2_role author
author
dc.subject.none.fl_str_mv A-OPERATORS
OPERATOR RANGES
topic A-OPERATORS
OPERATOR RANGES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Given a bounded positive linear operator A on a Hilbert space H we consider the semi-Hilbertian space (H, <,>_A), where <ℇ, n >_A =< Aℇ,n>. On the other hand, we consider the operator range R(A^1/2) with its canonical Hilbertian structure, denoted by R(A^1/2). In this paper we explore the relationship between different types of operators on (H, <,>_A) with classical subsets of operators on R(A^1/2), like Hermitian, normal, contractions, projections, partial isometries and so on. We extend a theorem by M. G. Krein on symmetrizable operators and a result by M. Mbekhta on reduced minimum modulus.
Fil: Arias, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Gonzalez, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description Given a bounded positive linear operator A on a Hilbert space H we consider the semi-Hilbertian space (H, <,>_A), where <ℇ, n >_A =< Aℇ,n>. On the other hand, we consider the operator range R(A^1/2) with its canonical Hilbertian structure, denoted by R(A^1/2). In this paper we explore the relationship between different types of operators on (H, <,>_A) with classical subsets of operators on R(A^1/2), like Hermitian, normal, contractions, projections, partial isometries and so on. We extend a theorem by M. G. Krein on symmetrizable operators and a result by M. Mbekhta on reduced minimum modulus.
publishDate 2009
dc.date.none.fl_str_mv 2009-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100314
Arias, Maria Laura; Corach, Gustavo; Gonzalez, Maria Celeste; Lifting properties in operator ranges; University of Szeged; Acta Scientiarum Mathematicarum (Szeged); 75; 3; 1-2009; 635-653
0001-6969
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100314
identifier_str_mv Arias, Maria Laura; Corach, Gustavo; Gonzalez, Maria Celeste; Lifting properties in operator ranges; University of Szeged; Acta Scientiarum Mathematicarum (Szeged); 75; 3; 1-2009; 635-653
0001-6969
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.acta.hu/acta/home.action
info:eu-repo/semantics/altIdentifier/url/http://acta.bibl.u-szeged.hu/16324/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv University of Szeged
publisher.none.fl_str_mv University of Szeged
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614490304282624
score 13.070432