Lifting properties in operator ranges
- Autores
- Arias, Maria Laura; Corach, Gustavo; Gonzalez, Maria Celeste
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a bounded positive linear operator A on a Hilbert space H we consider the semi-Hilbertian space (H, <,>_A), where <ℇ, n >_A =< Aℇ,n>. On the other hand, we consider the operator range R(A^1/2) with its canonical Hilbertian structure, denoted by R(A^1/2). In this paper we explore the relationship between different types of operators on (H, <,>_A) with classical subsets of operators on R(A^1/2), like Hermitian, normal, contractions, projections, partial isometries and so on. We extend a theorem by M. G. Krein on symmetrizable operators and a result by M. Mbekhta on reduced minimum modulus.
Fil: Arias, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Gonzalez, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
A-OPERATORS
OPERATOR RANGES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100314
Ver los metadatos del registro completo
id |
CONICETDig_78225d2ba8d2371cb74795ef32cc8d1b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100314 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Lifting properties in operator rangesArias, Maria LauraCorach, GustavoGonzalez, Maria CelesteA-OPERATORSOPERATOR RANGEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a bounded positive linear operator A on a Hilbert space H we consider the semi-Hilbertian space (H, <,>_A), where <ℇ, n >_A =< Aℇ,n>. On the other hand, we consider the operator range R(A^1/2) with its canonical Hilbertian structure, denoted by R(A^1/2). In this paper we explore the relationship between different types of operators on (H, <,>_A) with classical subsets of operators on R(A^1/2), like Hermitian, normal, contractions, projections, partial isometries and so on. We extend a theorem by M. G. Krein on symmetrizable operators and a result by M. Mbekhta on reduced minimum modulus.Fil: Arias, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Gonzalez, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaUniversity of Szeged2009-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100314Arias, Maria Laura; Corach, Gustavo; Gonzalez, Maria Celeste; Lifting properties in operator ranges; University of Szeged; Acta Scientiarum Mathematicarum (Szeged); 75; 3; 1-2009; 635-6530001-6969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.acta.hu/acta/home.actioninfo:eu-repo/semantics/altIdentifier/url/http://acta.bibl.u-szeged.hu/16324/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:45:08Zoai:ri.conicet.gov.ar:11336/100314instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:45:09.229CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Lifting properties in operator ranges |
title |
Lifting properties in operator ranges |
spellingShingle |
Lifting properties in operator ranges Arias, Maria Laura A-OPERATORS OPERATOR RANGES |
title_short |
Lifting properties in operator ranges |
title_full |
Lifting properties in operator ranges |
title_fullStr |
Lifting properties in operator ranges |
title_full_unstemmed |
Lifting properties in operator ranges |
title_sort |
Lifting properties in operator ranges |
dc.creator.none.fl_str_mv |
Arias, Maria Laura Corach, Gustavo Gonzalez, Maria Celeste |
author |
Arias, Maria Laura |
author_facet |
Arias, Maria Laura Corach, Gustavo Gonzalez, Maria Celeste |
author_role |
author |
author2 |
Corach, Gustavo Gonzalez, Maria Celeste |
author2_role |
author author |
dc.subject.none.fl_str_mv |
A-OPERATORS OPERATOR RANGES |
topic |
A-OPERATORS OPERATOR RANGES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given a bounded positive linear operator A on a Hilbert space H we consider the semi-Hilbertian space (H, <,>_A), where <ℇ, n >_A =< Aℇ,n>. On the other hand, we consider the operator range R(A^1/2) with its canonical Hilbertian structure, denoted by R(A^1/2). In this paper we explore the relationship between different types of operators on (H, <,>_A) with classical subsets of operators on R(A^1/2), like Hermitian, normal, contractions, projections, partial isometries and so on. We extend a theorem by M. G. Krein on symmetrizable operators and a result by M. Mbekhta on reduced minimum modulus. Fil: Arias, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Gonzalez, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
Given a bounded positive linear operator A on a Hilbert space H we consider the semi-Hilbertian space (H, <,>_A), where <ℇ, n >_A =< Aℇ,n>. On the other hand, we consider the operator range R(A^1/2) with its canonical Hilbertian structure, denoted by R(A^1/2). In this paper we explore the relationship between different types of operators on (H, <,>_A) with classical subsets of operators on R(A^1/2), like Hermitian, normal, contractions, projections, partial isometries and so on. We extend a theorem by M. G. Krein on symmetrizable operators and a result by M. Mbekhta on reduced minimum modulus. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100314 Arias, Maria Laura; Corach, Gustavo; Gonzalez, Maria Celeste; Lifting properties in operator ranges; University of Szeged; Acta Scientiarum Mathematicarum (Szeged); 75; 3; 1-2009; 635-653 0001-6969 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/100314 |
identifier_str_mv |
Arias, Maria Laura; Corach, Gustavo; Gonzalez, Maria Celeste; Lifting properties in operator ranges; University of Szeged; Acta Scientiarum Mathematicarum (Szeged); 75; 3; 1-2009; 635-653 0001-6969 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.acta.hu/acta/home.action info:eu-repo/semantics/altIdentifier/url/http://acta.bibl.u-szeged.hu/16324/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
University of Szeged |
publisher.none.fl_str_mv |
University of Szeged |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614490304282624 |
score |
13.070432 |