Addition of hydrogen peroxide enhances abiotic sunlight-induced processes to simultaneous emerging pollutants and bacteria abatement in simulated groundwater using CPC solar reacto...
- Autores
- Gutiérrez Zapata, Hector Mario; Sanabria, Janeth; Rengifo Herrera, Julian Andres
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Results revealed that almost 90% of 2,4-D (70 μg L−1), present in simulated groundwater containing 0.3 mg L−1 of iron at pH 7.0, was degraded after 320 min (60 min t30w) of natural sunlight irradiation while the viability of Escherichia coli cells (followed by DVC-FISH) was completely reduced after 220 min (40 min t30w) by simple addition of 10 mg L−1 of hydrogen peroxide. Klebsiella pneumoniae exhibited an especial behavior since its viability was only reduced in 3.5 logs after 320 min of sunlight irradiation (60 min t30w). Dark experiment (in presence 10 mg L−1 of H2O2) showed that Fenton processes may also play an important role reducing the 40% of 2,4-D after 320 min (60 min t30w) while viability of E. coli and K. pneumoniae underwent a reduction of 2.5 and 2 logs respectively. Photolysis experiments were not able to degrade 2,4-D and E. coli and K. pneumoniae viability was partially reduced (2 logs). Results showed that high 2,4-D abatement could be due to photo-induced and/or dark processes such as photo-Fenton and Fenton (dissolved and colloidal iron), photocatalysis (colloidal iron) and UV-B photolysis of H2O2. Viability reduction of microorganisms should be related to combined effects of UV-A + B irradiation, rising of temperature (44 °C), photo-Fenton, Fenton and photocatalytic processes.
Fil: Gutiérrez Zapata, Hector Mario. Universidad del Valle; Colombia
Fil: Sanabria, Janeth. Universidad del Valle; Colombia
Fil: Rengifo Herrera, Julian Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas ; Argentina - Materia
-
2,4-D
Detoxification
Disinfection
Photo-Fenton - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/37418
Ver los metadatos del registro completo
| id |
CONICETDig_77948377a5d45bd0d4cd177384f66fd7 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/37418 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Addition of hydrogen peroxide enhances abiotic sunlight-induced processes to simultaneous emerging pollutants and bacteria abatement in simulated groundwater using CPC solar reactorsGutiérrez Zapata, Hector MarioSanabria, JanethRengifo Herrera, Julian Andres2,4-DDetoxificationDisinfectionPhoto-Fentonhttps://purl.org/becyt/ford/2.7https://purl.org/becyt/ford/2Results revealed that almost 90% of 2,4-D (70 μg L−1), present in simulated groundwater containing 0.3 mg L−1 of iron at pH 7.0, was degraded after 320 min (60 min t30w) of natural sunlight irradiation while the viability of Escherichia coli cells (followed by DVC-FISH) was completely reduced after 220 min (40 min t30w) by simple addition of 10 mg L−1 of hydrogen peroxide. Klebsiella pneumoniae exhibited an especial behavior since its viability was only reduced in 3.5 logs after 320 min of sunlight irradiation (60 min t30w). Dark experiment (in presence 10 mg L−1 of H2O2) showed that Fenton processes may also play an important role reducing the 40% of 2,4-D after 320 min (60 min t30w) while viability of E. coli and K. pneumoniae underwent a reduction of 2.5 and 2 logs respectively. Photolysis experiments were not able to degrade 2,4-D and E. coli and K. pneumoniae viability was partially reduced (2 logs). Results showed that high 2,4-D abatement could be due to photo-induced and/or dark processes such as photo-Fenton and Fenton (dissolved and colloidal iron), photocatalysis (colloidal iron) and UV-B photolysis of H2O2. Viability reduction of microorganisms should be related to combined effects of UV-A + B irradiation, rising of temperature (44 °C), photo-Fenton, Fenton and photocatalytic processes.Fil: Gutiérrez Zapata, Hector Mario. Universidad del Valle; ColombiaFil: Sanabria, Janeth. Universidad del Valle; ColombiaFil: Rengifo Herrera, Julian Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas ; ArgentinaPergamon-Elsevier Science Ltd2017-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/37418Gutiérrez Zapata, Hector Mario; Sanabria, Janeth; Rengifo Herrera, Julian Andres; Addition of hydrogen peroxide enhances abiotic sunlight-induced processes to simultaneous emerging pollutants and bacteria abatement in simulated groundwater using CPC solar reactors; Pergamon-Elsevier Science Ltd; Solar Energy; 148; 5-2017; 110-1160038-092XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.solener.2017.03.068info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0038092X1730248info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:05:36Zoai:ri.conicet.gov.ar:11336/37418instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:05:37.005CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Addition of hydrogen peroxide enhances abiotic sunlight-induced processes to simultaneous emerging pollutants and bacteria abatement in simulated groundwater using CPC solar reactors |
| title |
Addition of hydrogen peroxide enhances abiotic sunlight-induced processes to simultaneous emerging pollutants and bacteria abatement in simulated groundwater using CPC solar reactors |
| spellingShingle |
Addition of hydrogen peroxide enhances abiotic sunlight-induced processes to simultaneous emerging pollutants and bacteria abatement in simulated groundwater using CPC solar reactors Gutiérrez Zapata, Hector Mario 2,4-D Detoxification Disinfection Photo-Fenton |
| title_short |
Addition of hydrogen peroxide enhances abiotic sunlight-induced processes to simultaneous emerging pollutants and bacteria abatement in simulated groundwater using CPC solar reactors |
| title_full |
Addition of hydrogen peroxide enhances abiotic sunlight-induced processes to simultaneous emerging pollutants and bacteria abatement in simulated groundwater using CPC solar reactors |
| title_fullStr |
Addition of hydrogen peroxide enhances abiotic sunlight-induced processes to simultaneous emerging pollutants and bacteria abatement in simulated groundwater using CPC solar reactors |
| title_full_unstemmed |
Addition of hydrogen peroxide enhances abiotic sunlight-induced processes to simultaneous emerging pollutants and bacteria abatement in simulated groundwater using CPC solar reactors |
| title_sort |
Addition of hydrogen peroxide enhances abiotic sunlight-induced processes to simultaneous emerging pollutants and bacteria abatement in simulated groundwater using CPC solar reactors |
| dc.creator.none.fl_str_mv |
Gutiérrez Zapata, Hector Mario Sanabria, Janeth Rengifo Herrera, Julian Andres |
| author |
Gutiérrez Zapata, Hector Mario |
| author_facet |
Gutiérrez Zapata, Hector Mario Sanabria, Janeth Rengifo Herrera, Julian Andres |
| author_role |
author |
| author2 |
Sanabria, Janeth Rengifo Herrera, Julian Andres |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
2,4-D Detoxification Disinfection Photo-Fenton |
| topic |
2,4-D Detoxification Disinfection Photo-Fenton |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.7 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Results revealed that almost 90% of 2,4-D (70 μg L−1), present in simulated groundwater containing 0.3 mg L−1 of iron at pH 7.0, was degraded after 320 min (60 min t30w) of natural sunlight irradiation while the viability of Escherichia coli cells (followed by DVC-FISH) was completely reduced after 220 min (40 min t30w) by simple addition of 10 mg L−1 of hydrogen peroxide. Klebsiella pneumoniae exhibited an especial behavior since its viability was only reduced in 3.5 logs after 320 min of sunlight irradiation (60 min t30w). Dark experiment (in presence 10 mg L−1 of H2O2) showed that Fenton processes may also play an important role reducing the 40% of 2,4-D after 320 min (60 min t30w) while viability of E. coli and K. pneumoniae underwent a reduction of 2.5 and 2 logs respectively. Photolysis experiments were not able to degrade 2,4-D and E. coli and K. pneumoniae viability was partially reduced (2 logs). Results showed that high 2,4-D abatement could be due to photo-induced and/or dark processes such as photo-Fenton and Fenton (dissolved and colloidal iron), photocatalysis (colloidal iron) and UV-B photolysis of H2O2. Viability reduction of microorganisms should be related to combined effects of UV-A + B irradiation, rising of temperature (44 °C), photo-Fenton, Fenton and photocatalytic processes. Fil: Gutiérrez Zapata, Hector Mario. Universidad del Valle; Colombia Fil: Sanabria, Janeth. Universidad del Valle; Colombia Fil: Rengifo Herrera, Julian Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas ; Argentina |
| description |
Results revealed that almost 90% of 2,4-D (70 μg L−1), present in simulated groundwater containing 0.3 mg L−1 of iron at pH 7.0, was degraded after 320 min (60 min t30w) of natural sunlight irradiation while the viability of Escherichia coli cells (followed by DVC-FISH) was completely reduced after 220 min (40 min t30w) by simple addition of 10 mg L−1 of hydrogen peroxide. Klebsiella pneumoniae exhibited an especial behavior since its viability was only reduced in 3.5 logs after 320 min of sunlight irradiation (60 min t30w). Dark experiment (in presence 10 mg L−1 of H2O2) showed that Fenton processes may also play an important role reducing the 40% of 2,4-D after 320 min (60 min t30w) while viability of E. coli and K. pneumoniae underwent a reduction of 2.5 and 2 logs respectively. Photolysis experiments were not able to degrade 2,4-D and E. coli and K. pneumoniae viability was partially reduced (2 logs). Results showed that high 2,4-D abatement could be due to photo-induced and/or dark processes such as photo-Fenton and Fenton (dissolved and colloidal iron), photocatalysis (colloidal iron) and UV-B photolysis of H2O2. Viability reduction of microorganisms should be related to combined effects of UV-A + B irradiation, rising of temperature (44 °C), photo-Fenton, Fenton and photocatalytic processes. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/37418 Gutiérrez Zapata, Hector Mario; Sanabria, Janeth; Rengifo Herrera, Julian Andres; Addition of hydrogen peroxide enhances abiotic sunlight-induced processes to simultaneous emerging pollutants and bacteria abatement in simulated groundwater using CPC solar reactors; Pergamon-Elsevier Science Ltd; Solar Energy; 148; 5-2017; 110-116 0038-092X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/37418 |
| identifier_str_mv |
Gutiérrez Zapata, Hector Mario; Sanabria, Janeth; Rengifo Herrera, Julian Andres; Addition of hydrogen peroxide enhances abiotic sunlight-induced processes to simultaneous emerging pollutants and bacteria abatement in simulated groundwater using CPC solar reactors; Pergamon-Elsevier Science Ltd; Solar Energy; 148; 5-2017; 110-116 0038-092X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.solener.2017.03.068 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0038092X1730248 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
| publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781338417364992 |
| score |
12.982451 |