A novel Approach for sEMG Gesture Recognition using Resource-constrained Hardware Platforms
- Autores
- Micheletto, Matías Javier; Chesñevar, Carlos Iván; Santos, Rodrigo Martin
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Classifying human gestures using surface electromyografic sensors (sEMG) is a challenging task. Wearable sensors have proven to be extremely useful in this context, but their performance is limited by several factors (signal noise, computing resources, battery consumption, etc.). In particular, computing resources impose a limitation in many application scenarios, in which lightweight classification approaches are desirable. Recent research has shown that machine learning techniques are useful for human gesture classification once their salient features have been determined. This paper presents a novel approach for human gesture classification in which two different strategies are combined: a) a technique based on autoencoders is used to perform feature extraction; b) two alternative machine learning algorithms (namely J48 and K*) are then used for the classification stage. Empirical results are provided, showing that for limited computing power platforms our approach outperforms other alternative methodologies.
Fil: Micheletto, Matías Javier. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia Golfo San Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia Golfo San Jorge. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigaciones y Transferencia Golfo San Jorge; Argentina
Fil: Chesñevar, Carlos Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Santos, Rodrigo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina - Materia
-
AUTOENCODER
DECISION TREES
GESTURE RECOGNITION
NEAREST NEIGHBOORS
SEMG - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/200891
Ver los metadatos del registro completo
id |
CONICETDig_776fa142f05ebd00eeaff57f658aca16 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/200891 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A novel Approach for sEMG Gesture Recognition using Resource-constrained Hardware PlatformsMicheletto, Matías JavierChesñevar, Carlos IvánSantos, Rodrigo MartinAUTOENCODERDECISION TREESGESTURE RECOGNITIONNEAREST NEIGHBOORSSEMGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Classifying human gestures using surface electromyografic sensors (sEMG) is a challenging task. Wearable sensors have proven to be extremely useful in this context, but their performance is limited by several factors (signal noise, computing resources, battery consumption, etc.). In particular, computing resources impose a limitation in many application scenarios, in which lightweight classification approaches are desirable. Recent research has shown that machine learning techniques are useful for human gesture classification once their salient features have been determined. This paper presents a novel approach for human gesture classification in which two different strategies are combined: a) a technique based on autoencoders is used to perform feature extraction; b) two alternative machine learning algorithms (namely J48 and K*) are then used for the classification stage. Empirical results are provided, showing that for limited computing power platforms our approach outperforms other alternative methodologies.Fil: Micheletto, Matías Javier. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia Golfo San Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia Golfo San Jorge. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigaciones y Transferencia Golfo San Jorge; ArgentinaFil: Chesñevar, Carlos Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Santos, Rodrigo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaComsis Consortium2022-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/200891Micheletto, Matías Javier; Chesñevar, Carlos Iván; Santos, Rodrigo Martin; A novel Approach for sEMG Gesture Recognition using Resource-constrained Hardware Platforms; Comsis Consortium; Computer Science And Information Systems; 19; 3; 9-2022; 1199-12121820-0214CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://doiserbia.nb.rs/Article.aspx?ID=1820-02142200025Minfo:eu-repo/semantics/altIdentifier/doi/10.2298/CSIS220228025Minfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:05:48Zoai:ri.conicet.gov.ar:11336/200891instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:05:48.746CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A novel Approach for sEMG Gesture Recognition using Resource-constrained Hardware Platforms |
title |
A novel Approach for sEMG Gesture Recognition using Resource-constrained Hardware Platforms |
spellingShingle |
A novel Approach for sEMG Gesture Recognition using Resource-constrained Hardware Platforms Micheletto, Matías Javier AUTOENCODER DECISION TREES GESTURE RECOGNITION NEAREST NEIGHBOORS SEMG |
title_short |
A novel Approach for sEMG Gesture Recognition using Resource-constrained Hardware Platforms |
title_full |
A novel Approach for sEMG Gesture Recognition using Resource-constrained Hardware Platforms |
title_fullStr |
A novel Approach for sEMG Gesture Recognition using Resource-constrained Hardware Platforms |
title_full_unstemmed |
A novel Approach for sEMG Gesture Recognition using Resource-constrained Hardware Platforms |
title_sort |
A novel Approach for sEMG Gesture Recognition using Resource-constrained Hardware Platforms |
dc.creator.none.fl_str_mv |
Micheletto, Matías Javier Chesñevar, Carlos Iván Santos, Rodrigo Martin |
author |
Micheletto, Matías Javier |
author_facet |
Micheletto, Matías Javier Chesñevar, Carlos Iván Santos, Rodrigo Martin |
author_role |
author |
author2 |
Chesñevar, Carlos Iván Santos, Rodrigo Martin |
author2_role |
author author |
dc.subject.none.fl_str_mv |
AUTOENCODER DECISION TREES GESTURE RECOGNITION NEAREST NEIGHBOORS SEMG |
topic |
AUTOENCODER DECISION TREES GESTURE RECOGNITION NEAREST NEIGHBOORS SEMG |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Classifying human gestures using surface electromyografic sensors (sEMG) is a challenging task. Wearable sensors have proven to be extremely useful in this context, but their performance is limited by several factors (signal noise, computing resources, battery consumption, etc.). In particular, computing resources impose a limitation in many application scenarios, in which lightweight classification approaches are desirable. Recent research has shown that machine learning techniques are useful for human gesture classification once their salient features have been determined. This paper presents a novel approach for human gesture classification in which two different strategies are combined: a) a technique based on autoencoders is used to perform feature extraction; b) two alternative machine learning algorithms (namely J48 and K*) are then used for the classification stage. Empirical results are provided, showing that for limited computing power platforms our approach outperforms other alternative methodologies. Fil: Micheletto, Matías Javier. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia Golfo San Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia Golfo San Jorge. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigaciones y Transferencia Golfo San Jorge; Argentina Fil: Chesñevar, Carlos Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina Fil: Santos, Rodrigo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina |
description |
Classifying human gestures using surface electromyografic sensors (sEMG) is a challenging task. Wearable sensors have proven to be extremely useful in this context, but their performance is limited by several factors (signal noise, computing resources, battery consumption, etc.). In particular, computing resources impose a limitation in many application scenarios, in which lightweight classification approaches are desirable. Recent research has shown that machine learning techniques are useful for human gesture classification once their salient features have been determined. This paper presents a novel approach for human gesture classification in which two different strategies are combined: a) a technique based on autoencoders is used to perform feature extraction; b) two alternative machine learning algorithms (namely J48 and K*) are then used for the classification stage. Empirical results are provided, showing that for limited computing power platforms our approach outperforms other alternative methodologies. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/200891 Micheletto, Matías Javier; Chesñevar, Carlos Iván; Santos, Rodrigo Martin; A novel Approach for sEMG Gesture Recognition using Resource-constrained Hardware Platforms; Comsis Consortium; Computer Science And Information Systems; 19; 3; 9-2022; 1199-1212 1820-0214 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/200891 |
identifier_str_mv |
Micheletto, Matías Javier; Chesñevar, Carlos Iván; Santos, Rodrigo Martin; A novel Approach for sEMG Gesture Recognition using Resource-constrained Hardware Platforms; Comsis Consortium; Computer Science And Information Systems; 19; 3; 9-2022; 1199-1212 1820-0214 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://doiserbia.nb.rs/Article.aspx?ID=1820-02142200025M info:eu-repo/semantics/altIdentifier/doi/10.2298/CSIS220228025M |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Comsis Consortium |
publisher.none.fl_str_mv |
Comsis Consortium |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782411495440384 |
score |
12.982451 |