Transfer Learning Decision Forests for Gesture Recognition
- Autores
- Goussies, Norberto Adrián; Ubalde, Sebastián; Mejail, Marta Estela
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Decision forests are an increasingly popular tool in computer vision problems. Their advantages include high computational efficiency, state-of-the-art accuracy and multi-class support. In this paper, we present a novel method for transfer learning which uses decision forests, and we apply it to recognize gestures and characters. We introduce two mechanisms into the decision forest framework in order to transfer knowledge from the source tasks to a given target task. The first one is mixed information gain, which is a data-based regularizer. The second one is label propagation, which infers the manifold structure of the feature space. We show that both of them are important to achieve higher accuracy. Our experiments demonstrate improvements over traditional decision forests in the ChaLearn Gesture Challenge and MNIST data set. They also compare favorably against other state-of-the-art classifiers.
Fil: Goussies, Norberto Adrián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ubalde, Sebastián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mejail, Marta Estela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
- Gesture Recognition
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/33149
Ver los metadatos del registro completo
id |
CONICETDig_5c8cfb8991e065e8b7a00b236aa0403d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/33149 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Transfer Learning Decision Forests for Gesture RecognitionGoussies, Norberto AdriánUbalde, SebastiánMejail, Marta EstelaGesture Recognitionhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Decision forests are an increasingly popular tool in computer vision problems. Their advantages include high computational efficiency, state-of-the-art accuracy and multi-class support. In this paper, we present a novel method for transfer learning which uses decision forests, and we apply it to recognize gestures and characters. We introduce two mechanisms into the decision forest framework in order to transfer knowledge from the source tasks to a given target task. The first one is mixed information gain, which is a data-based regularizer. The second one is label propagation, which infers the manifold structure of the feature space. We show that both of them are important to achieve higher accuracy. Our experiments demonstrate improvements over traditional decision forests in the ChaLearn Gesture Challenge and MNIST data set. They also compare favorably against other state-of-the-art classifiers.Fil: Goussies, Norberto Adrián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ubalde, Sebastián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mejail, Marta Estela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMicrotome2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33149Goussies, Norberto Adrián; Ubalde, Sebastián; Mejail, Marta Estela; Transfer Learning Decision Forests for Gesture Recognition ; Microtome; Journal of Machine Learning Research; 15; 2014; 3847−38701532-44351533-7928CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://jmlr.org/papers/v15/goussies14a.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:14:11Zoai:ri.conicet.gov.ar:11336/33149instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:14:11.325CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Transfer Learning Decision Forests for Gesture Recognition |
title |
Transfer Learning Decision Forests for Gesture Recognition |
spellingShingle |
Transfer Learning Decision Forests for Gesture Recognition Goussies, Norberto Adrián Gesture Recognition |
title_short |
Transfer Learning Decision Forests for Gesture Recognition |
title_full |
Transfer Learning Decision Forests for Gesture Recognition |
title_fullStr |
Transfer Learning Decision Forests for Gesture Recognition |
title_full_unstemmed |
Transfer Learning Decision Forests for Gesture Recognition |
title_sort |
Transfer Learning Decision Forests for Gesture Recognition |
dc.creator.none.fl_str_mv |
Goussies, Norberto Adrián Ubalde, Sebastián Mejail, Marta Estela |
author |
Goussies, Norberto Adrián |
author_facet |
Goussies, Norberto Adrián Ubalde, Sebastián Mejail, Marta Estela |
author_role |
author |
author2 |
Ubalde, Sebastián Mejail, Marta Estela |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Gesture Recognition |
topic |
Gesture Recognition |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Decision forests are an increasingly popular tool in computer vision problems. Their advantages include high computational efficiency, state-of-the-art accuracy and multi-class support. In this paper, we present a novel method for transfer learning which uses decision forests, and we apply it to recognize gestures and characters. We introduce two mechanisms into the decision forest framework in order to transfer knowledge from the source tasks to a given target task. The first one is mixed information gain, which is a data-based regularizer. The second one is label propagation, which infers the manifold structure of the feature space. We show that both of them are important to achieve higher accuracy. Our experiments demonstrate improvements over traditional decision forests in the ChaLearn Gesture Challenge and MNIST data set. They also compare favorably against other state-of-the-art classifiers. Fil: Goussies, Norberto Adrián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Ubalde, Sebastián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Mejail, Marta Estela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Decision forests are an increasingly popular tool in computer vision problems. Their advantages include high computational efficiency, state-of-the-art accuracy and multi-class support. In this paper, we present a novel method for transfer learning which uses decision forests, and we apply it to recognize gestures and characters. We introduce two mechanisms into the decision forest framework in order to transfer knowledge from the source tasks to a given target task. The first one is mixed information gain, which is a data-based regularizer. The second one is label propagation, which infers the manifold structure of the feature space. We show that both of them are important to achieve higher accuracy. Our experiments demonstrate improvements over traditional decision forests in the ChaLearn Gesture Challenge and MNIST data set. They also compare favorably against other state-of-the-art classifiers. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/33149 Goussies, Norberto Adrián; Ubalde, Sebastián; Mejail, Marta Estela; Transfer Learning Decision Forests for Gesture Recognition ; Microtome; Journal of Machine Learning Research; 15; 2014; 3847−3870 1532-4435 1533-7928 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/33149 |
identifier_str_mv |
Goussies, Norberto Adrián; Ubalde, Sebastián; Mejail, Marta Estela; Transfer Learning Decision Forests for Gesture Recognition ; Microtome; Journal of Machine Learning Research; 15; 2014; 3847−3870 1532-4435 1533-7928 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://jmlr.org/papers/v15/goussies14a.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Microtome |
publisher.none.fl_str_mv |
Microtome |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980756390936576 |
score |
12.993085 |