Fuzzy rule-based hand gesture recognition
- Autores
- Bedregal, Benjamín C.; Costa, Antônio Carlos da Rocha; Dimuro, Graçaliz P.
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This paper introduces a fuzzy rule-based method for the recognition of hand gestures acquired from a data glove, with an application to the recognition of some sample hand gestures of LIBRAS, the Brazilian Sign Language. The method uses the set of angles of finger joints for the classification of hand configurations, and classifications of segments of hand gestures for recognizing gestures. The segmentation of gestures is based on the concept of monotonic gesture segment, sequences of hand configurations in which the variations of the angles of the finger joints have the same sign (non-increasing or non-decreasing). Each gesture is characterized by its list of monotonic segments. The set of all lists of segments of a given set of gestures determine a set of finite automata, which are able to recognize every such gesture.
IFIP International Conference on Artificial Intelligence in Theory and Practice - Speech and Natural Language
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
data glove
monotonic gesture segment - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23919
Ver los metadatos del registro completo
id |
SEDICI_b8b5fedb3c89dda0f67a165b9aef9c99 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23919 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Fuzzy rule-based hand gesture recognitionBedregal, Benjamín C.Costa, Antônio Carlos da RochaDimuro, Graçaliz P.Ciencias Informáticasdata glovemonotonic gesture segmentThis paper introduces a fuzzy rule-based method for the recognition of hand gestures acquired from a data glove, with an application to the recognition of some sample hand gestures of LIBRAS, the Brazilian Sign Language. The method uses the set of angles of finger joints for the classification of hand configurations, and classifications of segments of hand gestures for recognizing gestures. The segmentation of gestures is based on the concept of monotonic gesture segment, sequences of hand configurations in which the variations of the angles of the finger joints have the same sign (non-increasing or non-decreasing). Each gesture is characterized by its list of monotonic segments. The set of all lists of segments of a given set of gestures determine a set of finite automata, which are able to recognize every such gesture.IFIP International Conference on Artificial Intelligence in Theory and Practice - Speech and Natural LanguageRed de Universidades con Carreras en Informática (RedUNCI)2006-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23919enginfo:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:40Zoai:sedici.unlp.edu.ar:10915/23919Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:40.504SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Fuzzy rule-based hand gesture recognition |
title |
Fuzzy rule-based hand gesture recognition |
spellingShingle |
Fuzzy rule-based hand gesture recognition Bedregal, Benjamín C. Ciencias Informáticas data glove monotonic gesture segment |
title_short |
Fuzzy rule-based hand gesture recognition |
title_full |
Fuzzy rule-based hand gesture recognition |
title_fullStr |
Fuzzy rule-based hand gesture recognition |
title_full_unstemmed |
Fuzzy rule-based hand gesture recognition |
title_sort |
Fuzzy rule-based hand gesture recognition |
dc.creator.none.fl_str_mv |
Bedregal, Benjamín C. Costa, Antônio Carlos da Rocha Dimuro, Graçaliz P. |
author |
Bedregal, Benjamín C. |
author_facet |
Bedregal, Benjamín C. Costa, Antônio Carlos da Rocha Dimuro, Graçaliz P. |
author_role |
author |
author2 |
Costa, Antônio Carlos da Rocha Dimuro, Graçaliz P. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas data glove monotonic gesture segment |
topic |
Ciencias Informáticas data glove monotonic gesture segment |
dc.description.none.fl_txt_mv |
This paper introduces a fuzzy rule-based method for the recognition of hand gestures acquired from a data glove, with an application to the recognition of some sample hand gestures of LIBRAS, the Brazilian Sign Language. The method uses the set of angles of finger joints for the classification of hand configurations, and classifications of segments of hand gestures for recognizing gestures. The segmentation of gestures is based on the concept of monotonic gesture segment, sequences of hand configurations in which the variations of the angles of the finger joints have the same sign (non-increasing or non-decreasing). Each gesture is characterized by its list of monotonic segments. The set of all lists of segments of a given set of gestures determine a set of finite automata, which are able to recognize every such gesture. IFIP International Conference on Artificial Intelligence in Theory and Practice - Speech and Natural Language Red de Universidades con Carreras en Informática (RedUNCI) |
description |
This paper introduces a fuzzy rule-based method for the recognition of hand gestures acquired from a data glove, with an application to the recognition of some sample hand gestures of LIBRAS, the Brazilian Sign Language. The method uses the set of angles of finger joints for the classification of hand configurations, and classifications of segments of hand gestures for recognizing gestures. The segmentation of gestures is based on the concept of monotonic gesture segment, sequences of hand configurations in which the variations of the angles of the finger joints have the same sign (non-increasing or non-decreasing). Each gesture is characterized by its list of monotonic segments. The set of all lists of segments of a given set of gestures determine a set of finite automata, which are able to recognize every such gesture. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23919 |
url |
http://sedici.unlp.edu.ar/handle/10915/23919 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615815809204224 |
score |
13.070432 |