A generalized hermite constant for imaginary quadratic fields
- Autores
- Chan, Wai Kiu; Icaza, María Inés; Lauret, Emilio Agustin
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce the projective Hermite constant for positive definite binary hermitian forms associated with an imaginary quadratic number field K. It is a lower bound for the classical Hermite constant, and these two constants coincide when K has class number one. Using the geometric tools developed by Mendoza and Vogtmann for their study of the homology of the Bianchi groups, we compute the projective Hermite constants for those K whose absolute discriminants are less than 70, and determine the hermitian forms that attain the projective Hermite constants in these cases. A comparison of the projective hermitian constant with some other generalizations of the classical Hermite constant is also given.
Fil: Chan, Wai Kiu. Wesleyan University; Estados Unidos
Fil: Icaza, María Inés. Universidad de Talca; Chile
Fil: Lauret, Emilio Agustin. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
Extreme Hermitian Forms
Hermite Constant
Minima of Hermitian Forms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/51828
Ver los metadatos del registro completo
id |
CONICETDig_b484b6d99fc70f2e27020123c482fd98 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/51828 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A generalized hermite constant for imaginary quadratic fieldsChan, Wai KiuIcaza, María InésLauret, Emilio AgustinExtreme Hermitian FormsHermite ConstantMinima of Hermitian Formshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We introduce the projective Hermite constant for positive definite binary hermitian forms associated with an imaginary quadratic number field K. It is a lower bound for the classical Hermite constant, and these two constants coincide when K has class number one. Using the geometric tools developed by Mendoza and Vogtmann for their study of the homology of the Bianchi groups, we compute the projective Hermite constants for those K whose absolute discriminants are less than 70, and determine the hermitian forms that attain the projective Hermite constants in these cases. A comparison of the projective hermitian constant with some other generalizations of the classical Hermite constant is also given.Fil: Chan, Wai Kiu. Wesleyan University; Estados UnidosFil: Icaza, María Inés. Universidad de Talca; ChileFil: Lauret, Emilio Agustin. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaAmerican Mathematical Society2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/51828Chan, Wai Kiu; Icaza, María Inés; Lauret, Emilio Agustin; A generalized hermite constant for imaginary quadratic fields; American Mathematical Society; Mathematics Of Computation; 84; 294; 1-2015; 1883-19000025-5718CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1090/S0025-5718-2015-02903-2info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/mcom/2015-84-294/S0025-5718-2015-02903-2/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:09Zoai:ri.conicet.gov.ar:11336/51828instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:09.779CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A generalized hermite constant for imaginary quadratic fields |
title |
A generalized hermite constant for imaginary quadratic fields |
spellingShingle |
A generalized hermite constant for imaginary quadratic fields Chan, Wai Kiu Extreme Hermitian Forms Hermite Constant Minima of Hermitian Forms |
title_short |
A generalized hermite constant for imaginary quadratic fields |
title_full |
A generalized hermite constant for imaginary quadratic fields |
title_fullStr |
A generalized hermite constant for imaginary quadratic fields |
title_full_unstemmed |
A generalized hermite constant for imaginary quadratic fields |
title_sort |
A generalized hermite constant for imaginary quadratic fields |
dc.creator.none.fl_str_mv |
Chan, Wai Kiu Icaza, María Inés Lauret, Emilio Agustin |
author |
Chan, Wai Kiu |
author_facet |
Chan, Wai Kiu Icaza, María Inés Lauret, Emilio Agustin |
author_role |
author |
author2 |
Icaza, María Inés Lauret, Emilio Agustin |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Extreme Hermitian Forms Hermite Constant Minima of Hermitian Forms |
topic |
Extreme Hermitian Forms Hermite Constant Minima of Hermitian Forms |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce the projective Hermite constant for positive definite binary hermitian forms associated with an imaginary quadratic number field K. It is a lower bound for the classical Hermite constant, and these two constants coincide when K has class number one. Using the geometric tools developed by Mendoza and Vogtmann for their study of the homology of the Bianchi groups, we compute the projective Hermite constants for those K whose absolute discriminants are less than 70, and determine the hermitian forms that attain the projective Hermite constants in these cases. A comparison of the projective hermitian constant with some other generalizations of the classical Hermite constant is also given. Fil: Chan, Wai Kiu. Wesleyan University; Estados Unidos Fil: Icaza, María Inés. Universidad de Talca; Chile Fil: Lauret, Emilio Agustin. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We introduce the projective Hermite constant for positive definite binary hermitian forms associated with an imaginary quadratic number field K. It is a lower bound for the classical Hermite constant, and these two constants coincide when K has class number one. Using the geometric tools developed by Mendoza and Vogtmann for their study of the homology of the Bianchi groups, we compute the projective Hermite constants for those K whose absolute discriminants are less than 70, and determine the hermitian forms that attain the projective Hermite constants in these cases. A comparison of the projective hermitian constant with some other generalizations of the classical Hermite constant is also given. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/51828 Chan, Wai Kiu; Icaza, María Inés; Lauret, Emilio Agustin; A generalized hermite constant for imaginary quadratic fields; American Mathematical Society; Mathematics Of Computation; 84; 294; 1-2015; 1883-1900 0025-5718 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/51828 |
identifier_str_mv |
Chan, Wai Kiu; Icaza, María Inés; Lauret, Emilio Agustin; A generalized hermite constant for imaginary quadratic fields; American Mathematical Society; Mathematics Of Computation; 84; 294; 1-2015; 1883-1900 0025-5718 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1090/S0025-5718-2015-02903-2 info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/mcom/2015-84-294/S0025-5718-2015-02903-2/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269679754674176 |
score |
13.13397 |