Equidistribution from fractal measures
- Autores
- Hochman, Michael; Shmerkin, Pablo Sebastian
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We give a fractal-geometric condition for a measure on [0,1] to be supported on points x that are normal in base n, i.e. such that (Formula presented.) equidistributes modulo 1. This condition is robust under C1 coordinate changes, and it applies also when n is a Pisot number rather than an integer. As applications we obtain new results (and strengthen old ones) about the prevalence of normal numbers in fractal sets, and new results on measure rigidity, specifically completing Host’s theorem to multiplicatively independent integers and proving a Rudolph-Johnson-type theorem for certain pairs of beta transformations.
Fil: Hochman, Michael. The Hebrew University of Jerusalem; Israel
Fil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. University of Surrey. Faculty of Engineering and Physical Sciences. Department of Mathematics; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Equidistribution
Fractals
Resonance
Normal Numbers
11k16
11a63
28a80
28d05 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/38161
Ver los metadatos del registro completo
| id |
CONICETDig_065764ed7ee85756a705538c15daeb8e |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/38161 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Equidistribution from fractal measuresHochman, MichaelShmerkin, Pablo SebastianEquidistributionFractalsResonanceNormal Numbers11k1611a6328a8028d05https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We give a fractal-geometric condition for a measure on [0,1] to be supported on points x that are normal in base n, i.e. such that (Formula presented.) equidistributes modulo 1. This condition is robust under C1 coordinate changes, and it applies also when n is a Pisot number rather than an integer. As applications we obtain new results (and strengthen old ones) about the prevalence of normal numbers in fractal sets, and new results on measure rigidity, specifically completing Host’s theorem to multiplicatively independent integers and proving a Rudolph-Johnson-type theorem for certain pairs of beta transformations.Fil: Hochman, Michael. The Hebrew University of Jerusalem; IsraelFil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. University of Surrey. Faculty of Engineering and Physical Sciences. Department of Mathematics; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38161Hochman, Michael; Shmerkin, Pablo Sebastian; Equidistribution from fractal measures; Springer; Inventiones Mathematicae; 202; 1; 10-2015; 427-4790020-9910CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00222-014-0573-5info:eu-repo/semantics/altIdentifier/doi/10.1007/s00222-014-0573-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:20:54Zoai:ri.conicet.gov.ar:11336/38161instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:20:54.546CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Equidistribution from fractal measures |
| title |
Equidistribution from fractal measures |
| spellingShingle |
Equidistribution from fractal measures Hochman, Michael Equidistribution Fractals Resonance Normal Numbers 11k16 11a63 28a80 28d05 |
| title_short |
Equidistribution from fractal measures |
| title_full |
Equidistribution from fractal measures |
| title_fullStr |
Equidistribution from fractal measures |
| title_full_unstemmed |
Equidistribution from fractal measures |
| title_sort |
Equidistribution from fractal measures |
| dc.creator.none.fl_str_mv |
Hochman, Michael Shmerkin, Pablo Sebastian |
| author |
Hochman, Michael |
| author_facet |
Hochman, Michael Shmerkin, Pablo Sebastian |
| author_role |
author |
| author2 |
Shmerkin, Pablo Sebastian |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Equidistribution Fractals Resonance Normal Numbers 11k16 11a63 28a80 28d05 |
| topic |
Equidistribution Fractals Resonance Normal Numbers 11k16 11a63 28a80 28d05 |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We give a fractal-geometric condition for a measure on [0,1] to be supported on points x that are normal in base n, i.e. such that (Formula presented.) equidistributes modulo 1. This condition is robust under C1 coordinate changes, and it applies also when n is a Pisot number rather than an integer. As applications we obtain new results (and strengthen old ones) about the prevalence of normal numbers in fractal sets, and new results on measure rigidity, specifically completing Host’s theorem to multiplicatively independent integers and proving a Rudolph-Johnson-type theorem for certain pairs of beta transformations. Fil: Hochman, Michael. The Hebrew University of Jerusalem; Israel Fil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. University of Surrey. Faculty of Engineering and Physical Sciences. Department of Mathematics; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
We give a fractal-geometric condition for a measure on [0,1] to be supported on points x that are normal in base n, i.e. such that (Formula presented.) equidistributes modulo 1. This condition is robust under C1 coordinate changes, and it applies also when n is a Pisot number rather than an integer. As applications we obtain new results (and strengthen old ones) about the prevalence of normal numbers in fractal sets, and new results on measure rigidity, specifically completing Host’s theorem to multiplicatively independent integers and proving a Rudolph-Johnson-type theorem for certain pairs of beta transformations. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/38161 Hochman, Michael; Shmerkin, Pablo Sebastian; Equidistribution from fractal measures; Springer; Inventiones Mathematicae; 202; 1; 10-2015; 427-479 0020-9910 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/38161 |
| identifier_str_mv |
Hochman, Michael; Shmerkin, Pablo Sebastian; Equidistribution from fractal measures; Springer; Inventiones Mathematicae; 202; 1; 10-2015; 427-479 0020-9910 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00222-014-0573-5 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00222-014-0573-5 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782660555309056 |
| score |
12.982451 |