Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System
- Autores
- Méndez Babey, Máximo; Rossit, Daniel Alejandro; González, Begoña; Frutos, Mariano
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper proposes a novel metaheuristic framework using a Differential Evolution (DE) algorithm with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Both algorithms are combined employing a collaborative strategy with sequential execution, which is called DE-NSGA-II. The DE-NSGA-II takes advantage of the exploration abilities of the multi-objective evolutionary algorithms strengthened with the ability to search global mono-objective optimum of DE, that enhances the capability of finding those extreme solutions of Pareto Optimal Front (POF) difficult to achieve. Numerous experiments and performance comparisons between different evolutionary algorithms were performed on a referent problem for the mono-objective and multi-objective literature, which consists of the design of a double reduction gear train. A preliminary study of the problem, solved in an exhaustive way, discovers the low density of solutions in the vicinity of the optimal solution (mono-objective case) as well as in some areas of the POF of potential interest to a decision maker (multi-objective case). This characteristic of the problem would explain the considerable difficulties for its resolution when exact methods and/or metaheuristics are used, especially in the multi-objective case. However, the DE-NSGA-II framework exceeds these difficulties and obtains the whole POF which significantly improves the few previous multi-objective studies.
Fil: Méndez Babey, Máximo. Universidad de Las Palmas de Gran Canaria; España
Fil: Rossit, Daniel Alejandro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: González, Begoña. Universidad de Las Palmas de Gran Canaria; España
Fil: Frutos, Mariano. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina - Materia
-
DIFFERENTIAL EVOLUTION
EVOLUTIONARY COMPUTATION
GEAR TRAIN OPTIMIZATION
GENETIC ALGORITHMS
MECHANICAL ENGINEERING
MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS
NON-DOMINATED SORTING GENETIC ALGORITHM-II - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100379
Ver los metadatos del registro completo
id |
CONICETDig_7732aae8a4ae54075a3cdab263ca24e0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100379 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear SystemMéndez Babey, MáximoRossit, Daniel AlejandroGonzález, BegoñaFrutos, MarianoDIFFERENTIAL EVOLUTIONEVOLUTIONARY COMPUTATIONGEAR TRAIN OPTIMIZATIONGENETIC ALGORITHMSMECHANICAL ENGINEERINGMULTI-OBJECTIVE EVOLUTIONARY ALGORITHMSNON-DOMINATED SORTING GENETIC ALGORITHM-IIhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2This paper proposes a novel metaheuristic framework using a Differential Evolution (DE) algorithm with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Both algorithms are combined employing a collaborative strategy with sequential execution, which is called DE-NSGA-II. The DE-NSGA-II takes advantage of the exploration abilities of the multi-objective evolutionary algorithms strengthened with the ability to search global mono-objective optimum of DE, that enhances the capability of finding those extreme solutions of Pareto Optimal Front (POF) difficult to achieve. Numerous experiments and performance comparisons between different evolutionary algorithms were performed on a referent problem for the mono-objective and multi-objective literature, which consists of the design of a double reduction gear train. A preliminary study of the problem, solved in an exhaustive way, discovers the low density of solutions in the vicinity of the optimal solution (mono-objective case) as well as in some areas of the POF of potential interest to a decision maker (multi-objective case). This characteristic of the problem would explain the considerable difficulties for its resolution when exact methods and/or metaheuristics are used, especially in the multi-objective case. However, the DE-NSGA-II framework exceeds these difficulties and obtains the whole POF which significantly improves the few previous multi-objective studies.Fil: Méndez Babey, Máximo. Universidad de Las Palmas de Gran Canaria; EspañaFil: Rossit, Daniel Alejandro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: González, Begoña. Universidad de Las Palmas de Gran Canaria; EspañaFil: Frutos, Mariano. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; ArgentinaInstitute of Electrical and Electronics Engineers2019-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100379Méndez Babey, Máximo; Rossit, Daniel Alejandro; González, Begoña; Frutos, Mariano; Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System; Institute of Electrical and Electronics Engineers; IEEE Access; 8; 12-2019; 3482-34972169-3536CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8945204info:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2019.2962906info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:22:46Zoai:ri.conicet.gov.ar:11336/100379instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:22:46.816CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System |
title |
Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System |
spellingShingle |
Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System Méndez Babey, Máximo DIFFERENTIAL EVOLUTION EVOLUTIONARY COMPUTATION GEAR TRAIN OPTIMIZATION GENETIC ALGORITHMS MECHANICAL ENGINEERING MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS NON-DOMINATED SORTING GENETIC ALGORITHM-II |
title_short |
Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System |
title_full |
Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System |
title_fullStr |
Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System |
title_full_unstemmed |
Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System |
title_sort |
Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System |
dc.creator.none.fl_str_mv |
Méndez Babey, Máximo Rossit, Daniel Alejandro González, Begoña Frutos, Mariano |
author |
Méndez Babey, Máximo |
author_facet |
Méndez Babey, Máximo Rossit, Daniel Alejandro González, Begoña Frutos, Mariano |
author_role |
author |
author2 |
Rossit, Daniel Alejandro González, Begoña Frutos, Mariano |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DIFFERENTIAL EVOLUTION EVOLUTIONARY COMPUTATION GEAR TRAIN OPTIMIZATION GENETIC ALGORITHMS MECHANICAL ENGINEERING MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS NON-DOMINATED SORTING GENETIC ALGORITHM-II |
topic |
DIFFERENTIAL EVOLUTION EVOLUTIONARY COMPUTATION GEAR TRAIN OPTIMIZATION GENETIC ALGORITHMS MECHANICAL ENGINEERING MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS NON-DOMINATED SORTING GENETIC ALGORITHM-II |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper proposes a novel metaheuristic framework using a Differential Evolution (DE) algorithm with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Both algorithms are combined employing a collaborative strategy with sequential execution, which is called DE-NSGA-II. The DE-NSGA-II takes advantage of the exploration abilities of the multi-objective evolutionary algorithms strengthened with the ability to search global mono-objective optimum of DE, that enhances the capability of finding those extreme solutions of Pareto Optimal Front (POF) difficult to achieve. Numerous experiments and performance comparisons between different evolutionary algorithms were performed on a referent problem for the mono-objective and multi-objective literature, which consists of the design of a double reduction gear train. A preliminary study of the problem, solved in an exhaustive way, discovers the low density of solutions in the vicinity of the optimal solution (mono-objective case) as well as in some areas of the POF of potential interest to a decision maker (multi-objective case). This characteristic of the problem would explain the considerable difficulties for its resolution when exact methods and/or metaheuristics are used, especially in the multi-objective case. However, the DE-NSGA-II framework exceeds these difficulties and obtains the whole POF which significantly improves the few previous multi-objective studies. Fil: Méndez Babey, Máximo. Universidad de Las Palmas de Gran Canaria; España Fil: Rossit, Daniel Alejandro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: González, Begoña. Universidad de Las Palmas de Gran Canaria; España Fil: Frutos, Mariano. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina |
description |
This paper proposes a novel metaheuristic framework using a Differential Evolution (DE) algorithm with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Both algorithms are combined employing a collaborative strategy with sequential execution, which is called DE-NSGA-II. The DE-NSGA-II takes advantage of the exploration abilities of the multi-objective evolutionary algorithms strengthened with the ability to search global mono-objective optimum of DE, that enhances the capability of finding those extreme solutions of Pareto Optimal Front (POF) difficult to achieve. Numerous experiments and performance comparisons between different evolutionary algorithms were performed on a referent problem for the mono-objective and multi-objective literature, which consists of the design of a double reduction gear train. A preliminary study of the problem, solved in an exhaustive way, discovers the low density of solutions in the vicinity of the optimal solution (mono-objective case) as well as in some areas of the POF of potential interest to a decision maker (multi-objective case). This characteristic of the problem would explain the considerable difficulties for its resolution when exact methods and/or metaheuristics are used, especially in the multi-objective case. However, the DE-NSGA-II framework exceeds these difficulties and obtains the whole POF which significantly improves the few previous multi-objective studies. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100379 Méndez Babey, Máximo; Rossit, Daniel Alejandro; González, Begoña; Frutos, Mariano; Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System; Institute of Electrical and Electronics Engineers; IEEE Access; 8; 12-2019; 3482-3497 2169-3536 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/100379 |
identifier_str_mv |
Méndez Babey, Máximo; Rossit, Daniel Alejandro; González, Begoña; Frutos, Mariano; Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System; Institute of Electrical and Electronics Engineers; IEEE Access; 8; 12-2019; 3482-3497 2169-3536 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8945204 info:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2019.2962906 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614220401868800 |
score |
13.070432 |