On unrolled Hopf algebras

Autores
Andruskiewitsch, Nicolas; Schweigert, Christoph
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show that the definition of unrolled Hopf algebras can be naturally extended to the Nichols algebra B(V) of a Yetter-Drinfeld module V on which a Lie algebra g acts by biderivations. As a special case, we find unrolled versions of the small quantum group.
Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Schweigert, Christoph. Universitat Hamburg; Alemania
Materia
Hopf algebras
Nichols algebras
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/89300

id CONICETDig_763d305db674b8a4d8d37373becb5b51
oai_identifier_str oai:ri.conicet.gov.ar:11336/89300
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On unrolled Hopf algebrasAndruskiewitsch, NicolasSchweigert, ChristophHopf algebrasNichols algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that the definition of unrolled Hopf algebras can be naturally extended to the Nichols algebra B(V) of a Yetter-Drinfeld module V on which a Lie algebra g acts by biderivations. As a special case, we find unrolled versions of the small quantum group.Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Schweigert, Christoph. Universitat Hamburg; AlemaniaWorld Scientific2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89300Andruskiewitsch, Nicolas; Schweigert, Christoph; On unrolled Hopf algebras; World Scientific; Journal Of Knot Theory And Its Ramifications; 27; 10; 2-20180218-21651793-6527CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1142/S0218216518500530.info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0218216518500530info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:29Zoai:ri.conicet.gov.ar:11336/89300instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:30.153CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On unrolled Hopf algebras
title On unrolled Hopf algebras
spellingShingle On unrolled Hopf algebras
Andruskiewitsch, Nicolas
Hopf algebras
Nichols algebras
title_short On unrolled Hopf algebras
title_full On unrolled Hopf algebras
title_fullStr On unrolled Hopf algebras
title_full_unstemmed On unrolled Hopf algebras
title_sort On unrolled Hopf algebras
dc.creator.none.fl_str_mv Andruskiewitsch, Nicolas
Schweigert, Christoph
author Andruskiewitsch, Nicolas
author_facet Andruskiewitsch, Nicolas
Schweigert, Christoph
author_role author
author2 Schweigert, Christoph
author2_role author
dc.subject.none.fl_str_mv Hopf algebras
Nichols algebras
topic Hopf algebras
Nichols algebras
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We show that the definition of unrolled Hopf algebras can be naturally extended to the Nichols algebra B(V) of a Yetter-Drinfeld module V on which a Lie algebra g acts by biderivations. As a special case, we find unrolled versions of the small quantum group.
Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Schweigert, Christoph. Universitat Hamburg; Alemania
description We show that the definition of unrolled Hopf algebras can be naturally extended to the Nichols algebra B(V) of a Yetter-Drinfeld module V on which a Lie algebra g acts by biderivations. As a special case, we find unrolled versions of the small quantum group.
publishDate 2018
dc.date.none.fl_str_mv 2018-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/89300
Andruskiewitsch, Nicolas; Schweigert, Christoph; On unrolled Hopf algebras; World Scientific; Journal Of Knot Theory And Its Ramifications; 27; 10; 2-2018
0218-2165
1793-6527
CONICET Digital
CONICET
url http://hdl.handle.net/11336/89300
identifier_str_mv Andruskiewitsch, Nicolas; Schweigert, Christoph; On unrolled Hopf algebras; World Scientific; Journal Of Knot Theory And Its Ramifications; 27; 10; 2-2018
0218-2165
1793-6527
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1142/S0218216518500530.
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0218216518500530
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268670446796800
score 13.13397