Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings
- Autores
- Angiono, Iván Ezequiel; Lentner, Simon; Sanmarco, Guillermo Luis
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We construct finite-dimensional Hopf algebras whose coradical is the group algebra of a central extension of an abelian group. They fall into families associated to a semisimple Lie algebra together with a Dynkin diagram automorphism. We show conversely that every finite-dimensional pointed Hopf algebra over a nonabelian group with nonsimple infinitesimal braiding of rank at least 4 is of this form. We follow the steps of the Lifting Method by Andruskiewitsch–Schneider. Our starting point is the classification of finite-dimensional Nichols algebras over nonabelian groups by Heckenberger–Vendramin, which consist of low-rank exceptions and large-rank families. We prove that the large-rank families are cocycle twists of Nichols algebras constructed by the second author as foldings of Nichols algebras of Cartan type over abelian groups by outer automorphisms. This enables us to give uniform Lie-theoretic descriptions of the large-rank families, prove generation in degree 1, and construct liftings. We also show that every lifting is a cocycle deformation of the corresponding coradically graded Hopf algebra using an explicit presentation by generators and relations of the Nichols algebra. On the level of tensor categories, we construct families of graded extensions of the representation category of a quantum group by a group of diagram automorphism.
Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Lentner, Simon. Universitat Hamburg. Fakutat Fur Mathematik, Informak Und Naturwissenschaften.;
Fil: Sanmarco, Guillermo Luis. Iowa State University; Estados Unidos - Materia
-
NICHOLS ALGEBRAS
HOPF ALGEBRAS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/248305
Ver los metadatos del registro completo
id |
CONICETDig_eece312c9a7c18cff96ccf62d525580b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/248305 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Pointed Hopf algebras over nonabelian groups with nonsimple standard braidingsAngiono, Iván EzequielLentner, SimonSanmarco, Guillermo LuisNICHOLS ALGEBRASHOPF ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We construct finite-dimensional Hopf algebras whose coradical is the group algebra of a central extension of an abelian group. They fall into families associated to a semisimple Lie algebra together with a Dynkin diagram automorphism. We show conversely that every finite-dimensional pointed Hopf algebra over a nonabelian group with nonsimple infinitesimal braiding of rank at least 4 is of this form. We follow the steps of the Lifting Method by Andruskiewitsch–Schneider. Our starting point is the classification of finite-dimensional Nichols algebras over nonabelian groups by Heckenberger–Vendramin, which consist of low-rank exceptions and large-rank families. We prove that the large-rank families are cocycle twists of Nichols algebras constructed by the second author as foldings of Nichols algebras of Cartan type over abelian groups by outer automorphisms. This enables us to give uniform Lie-theoretic descriptions of the large-rank families, prove generation in degree 1, and construct liftings. We also show that every lifting is a cocycle deformation of the corresponding coradically graded Hopf algebra using an explicit presentation by generators and relations of the Nichols algebra. On the level of tensor categories, we construct families of graded extensions of the representation category of a quantum group by a group of diagram automorphism.Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Lentner, Simon. Universitat Hamburg. Fakutat Fur Mathematik, Informak Und Naturwissenschaften.;Fil: Sanmarco, Guillermo Luis. Iowa State University; Estados UnidosLondon Mathematical Society2023-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/248305Angiono, Iván Ezequiel; Lentner, Simon; Sanmarco, Guillermo Luis; Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings; London Mathematical Society; Proceedings of the London Mathematical Society; 127; 4; 1-9-2023; 1185-12450024-61151460-244XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1112/plms.12559info:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/full/10.1112/plms.12559info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:00Zoai:ri.conicet.gov.ar:11336/248305instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:00.773CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings |
title |
Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings |
spellingShingle |
Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings Angiono, Iván Ezequiel NICHOLS ALGEBRAS HOPF ALGEBRAS |
title_short |
Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings |
title_full |
Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings |
title_fullStr |
Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings |
title_full_unstemmed |
Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings |
title_sort |
Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings |
dc.creator.none.fl_str_mv |
Angiono, Iván Ezequiel Lentner, Simon Sanmarco, Guillermo Luis |
author |
Angiono, Iván Ezequiel |
author_facet |
Angiono, Iván Ezequiel Lentner, Simon Sanmarco, Guillermo Luis |
author_role |
author |
author2 |
Lentner, Simon Sanmarco, Guillermo Luis |
author2_role |
author author |
dc.subject.none.fl_str_mv |
NICHOLS ALGEBRAS HOPF ALGEBRAS |
topic |
NICHOLS ALGEBRAS HOPF ALGEBRAS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We construct finite-dimensional Hopf algebras whose coradical is the group algebra of a central extension of an abelian group. They fall into families associated to a semisimple Lie algebra together with a Dynkin diagram automorphism. We show conversely that every finite-dimensional pointed Hopf algebra over a nonabelian group with nonsimple infinitesimal braiding of rank at least 4 is of this form. We follow the steps of the Lifting Method by Andruskiewitsch–Schneider. Our starting point is the classification of finite-dimensional Nichols algebras over nonabelian groups by Heckenberger–Vendramin, which consist of low-rank exceptions and large-rank families. We prove that the large-rank families are cocycle twists of Nichols algebras constructed by the second author as foldings of Nichols algebras of Cartan type over abelian groups by outer automorphisms. This enables us to give uniform Lie-theoretic descriptions of the large-rank families, prove generation in degree 1, and construct liftings. We also show that every lifting is a cocycle deformation of the corresponding coradically graded Hopf algebra using an explicit presentation by generators and relations of the Nichols algebra. On the level of tensor categories, we construct families of graded extensions of the representation category of a quantum group by a group of diagram automorphism. Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Lentner, Simon. Universitat Hamburg. Fakutat Fur Mathematik, Informak Und Naturwissenschaften.; Fil: Sanmarco, Guillermo Luis. Iowa State University; Estados Unidos |
description |
We construct finite-dimensional Hopf algebras whose coradical is the group algebra of a central extension of an abelian group. They fall into families associated to a semisimple Lie algebra together with a Dynkin diagram automorphism. We show conversely that every finite-dimensional pointed Hopf algebra over a nonabelian group with nonsimple infinitesimal braiding of rank at least 4 is of this form. We follow the steps of the Lifting Method by Andruskiewitsch–Schneider. Our starting point is the classification of finite-dimensional Nichols algebras over nonabelian groups by Heckenberger–Vendramin, which consist of low-rank exceptions and large-rank families. We prove that the large-rank families are cocycle twists of Nichols algebras constructed by the second author as foldings of Nichols algebras of Cartan type over abelian groups by outer automorphisms. This enables us to give uniform Lie-theoretic descriptions of the large-rank families, prove generation in degree 1, and construct liftings. We also show that every lifting is a cocycle deformation of the corresponding coradically graded Hopf algebra using an explicit presentation by generators and relations of the Nichols algebra. On the level of tensor categories, we construct families of graded extensions of the representation category of a quantum group by a group of diagram automorphism. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/248305 Angiono, Iván Ezequiel; Lentner, Simon; Sanmarco, Guillermo Luis; Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings; London Mathematical Society; Proceedings of the London Mathematical Society; 127; 4; 1-9-2023; 1185-1245 0024-6115 1460-244X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/248305 |
identifier_str_mv |
Angiono, Iván Ezequiel; Lentner, Simon; Sanmarco, Guillermo Luis; Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings; London Mathematical Society; Proceedings of the London Mathematical Society; 127; 4; 1-9-2023; 1185-1245 0024-6115 1460-244X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1112/plms.12559 info:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/full/10.1112/plms.12559 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
London Mathematical Society |
publisher.none.fl_str_mv |
London Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269067179720704 |
score |
13.13397 |