Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings

Autores
Angiono, Iván Ezequiel; Lentner, Simon; Sanmarco, Guillermo Luis
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We construct finite-dimensional Hopf algebras whose coradical is the group algebra of a central extension of an abelian group. They fall into families associated to a semisimple Lie algebra together with a Dynkin diagram automorphism. We show conversely that every finite-dimensional pointed Hopf algebra over a nonabelian group with nonsimple infinitesimal braiding of rank at least 4 is of this form. We follow the steps of the Lifting Method by Andruskiewitsch–Schneider. Our starting point is the classification of finite-dimensional Nichols algebras over nonabelian groups by Heckenberger–Vendramin, which consist of low-rank exceptions and large-rank families. We prove that the large-rank families are cocycle twists of Nichols algebras constructed by the second author as foldings of Nichols algebras of Cartan type over abelian groups by outer automorphisms. This enables us to give uniform Lie-theoretic descriptions of the large-rank families, prove generation in degree 1, and construct liftings. We also show that every lifting is a cocycle deformation of the corresponding coradically graded Hopf algebra using an explicit presentation by generators and relations of the Nichols algebra. On the level of tensor categories, we construct families of graded extensions of the representation category of a quantum group by a group of diagram automorphism.
Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Lentner, Simon. Universitat Hamburg. Fakutat Fur Mathematik, Informak Und Naturwissenschaften.;
Fil: Sanmarco, Guillermo Luis. Iowa State University; Estados Unidos
Materia
NICHOLS ALGEBRAS
HOPF ALGEBRAS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/248305

id CONICETDig_eece312c9a7c18cff96ccf62d525580b
oai_identifier_str oai:ri.conicet.gov.ar:11336/248305
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Pointed Hopf algebras over nonabelian groups with nonsimple standard braidingsAngiono, Iván EzequielLentner, SimonSanmarco, Guillermo LuisNICHOLS ALGEBRASHOPF ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We construct finite-dimensional Hopf algebras whose coradical is the group algebra of a central extension of an abelian group. They fall into families associated to a semisimple Lie algebra together with a Dynkin diagram automorphism. We show conversely that every finite-dimensional pointed Hopf algebra over a nonabelian group with nonsimple infinitesimal braiding of rank at least 4 is of this form. We follow the steps of the Lifting Method by Andruskiewitsch–Schneider. Our starting point is the classification of finite-dimensional Nichols algebras over nonabelian groups by Heckenberger–Vendramin, which consist of low-rank exceptions and large-rank families. We prove that the large-rank families are cocycle twists of Nichols algebras constructed by the second author as foldings of Nichols algebras of Cartan type over abelian groups by outer automorphisms. This enables us to give uniform Lie-theoretic descriptions of the large-rank families, prove generation in degree 1, and construct liftings. We also show that every lifting is a cocycle deformation of the corresponding coradically graded Hopf algebra using an explicit presentation by generators and relations of the Nichols algebra. On the level of tensor categories, we construct families of graded extensions of the representation category of a quantum group by a group of diagram automorphism.Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Lentner, Simon. Universitat Hamburg. Fakutat Fur Mathematik, Informak Und Naturwissenschaften.;Fil: Sanmarco, Guillermo Luis. Iowa State University; Estados UnidosLondon Mathematical Society2023-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/248305Angiono, Iván Ezequiel; Lentner, Simon; Sanmarco, Guillermo Luis; Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings; London Mathematical Society; Proceedings of the London Mathematical Society; 127; 4; 1-9-2023; 1185-12450024-61151460-244XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1112/plms.12559info:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/full/10.1112/plms.12559info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:00Zoai:ri.conicet.gov.ar:11336/248305instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:00.773CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings
title Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings
spellingShingle Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings
Angiono, Iván Ezequiel
NICHOLS ALGEBRAS
HOPF ALGEBRAS
title_short Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings
title_full Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings
title_fullStr Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings
title_full_unstemmed Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings
title_sort Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings
dc.creator.none.fl_str_mv Angiono, Iván Ezequiel
Lentner, Simon
Sanmarco, Guillermo Luis
author Angiono, Iván Ezequiel
author_facet Angiono, Iván Ezequiel
Lentner, Simon
Sanmarco, Guillermo Luis
author_role author
author2 Lentner, Simon
Sanmarco, Guillermo Luis
author2_role author
author
dc.subject.none.fl_str_mv NICHOLS ALGEBRAS
HOPF ALGEBRAS
topic NICHOLS ALGEBRAS
HOPF ALGEBRAS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We construct finite-dimensional Hopf algebras whose coradical is the group algebra of a central extension of an abelian group. They fall into families associated to a semisimple Lie algebra together with a Dynkin diagram automorphism. We show conversely that every finite-dimensional pointed Hopf algebra over a nonabelian group with nonsimple infinitesimal braiding of rank at least 4 is of this form. We follow the steps of the Lifting Method by Andruskiewitsch–Schneider. Our starting point is the classification of finite-dimensional Nichols algebras over nonabelian groups by Heckenberger–Vendramin, which consist of low-rank exceptions and large-rank families. We prove that the large-rank families are cocycle twists of Nichols algebras constructed by the second author as foldings of Nichols algebras of Cartan type over abelian groups by outer automorphisms. This enables us to give uniform Lie-theoretic descriptions of the large-rank families, prove generation in degree 1, and construct liftings. We also show that every lifting is a cocycle deformation of the corresponding coradically graded Hopf algebra using an explicit presentation by generators and relations of the Nichols algebra. On the level of tensor categories, we construct families of graded extensions of the representation category of a quantum group by a group of diagram automorphism.
Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Lentner, Simon. Universitat Hamburg. Fakutat Fur Mathematik, Informak Und Naturwissenschaften.;
Fil: Sanmarco, Guillermo Luis. Iowa State University; Estados Unidos
description We construct finite-dimensional Hopf algebras whose coradical is the group algebra of a central extension of an abelian group. They fall into families associated to a semisimple Lie algebra together with a Dynkin diagram automorphism. We show conversely that every finite-dimensional pointed Hopf algebra over a nonabelian group with nonsimple infinitesimal braiding of rank at least 4 is of this form. We follow the steps of the Lifting Method by Andruskiewitsch–Schneider. Our starting point is the classification of finite-dimensional Nichols algebras over nonabelian groups by Heckenberger–Vendramin, which consist of low-rank exceptions and large-rank families. We prove that the large-rank families are cocycle twists of Nichols algebras constructed by the second author as foldings of Nichols algebras of Cartan type over abelian groups by outer automorphisms. This enables us to give uniform Lie-theoretic descriptions of the large-rank families, prove generation in degree 1, and construct liftings. We also show that every lifting is a cocycle deformation of the corresponding coradically graded Hopf algebra using an explicit presentation by generators and relations of the Nichols algebra. On the level of tensor categories, we construct families of graded extensions of the representation category of a quantum group by a group of diagram automorphism.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/248305
Angiono, Iván Ezequiel; Lentner, Simon; Sanmarco, Guillermo Luis; Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings; London Mathematical Society; Proceedings of the London Mathematical Society; 127; 4; 1-9-2023; 1185-1245
0024-6115
1460-244X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/248305
identifier_str_mv Angiono, Iván Ezequiel; Lentner, Simon; Sanmarco, Guillermo Luis; Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings; London Mathematical Society; Proceedings of the London Mathematical Society; 127; 4; 1-9-2023; 1185-1245
0024-6115
1460-244X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1112/plms.12559
info:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/full/10.1112/plms.12559
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv London Mathematical Society
publisher.none.fl_str_mv London Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269067179720704
score 13.13397