Methyl Oleate Isomerization and Hydrogenation over Ni/α-Al2O3: A Kinetic Study Recognizing Differences in the Molecular Size of Hydrogen and Organic Species

Autores
Cabrera, Maria Ines; Grau, Ricardo José Antonio
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The kinetics of the hydrogenation and cis/trans isomerization of methyl oleate on a Ni/a-Al2O3 catalyst was studied in the absence of mass-transport limitation, at 398K=T=443Kand370kPa = PH2 = 650 kPa. On the basis of the Horiuti–Polanyi mechanism, involving a sigma half-hydrogenated surface intermediate, a kinetic model was derived in the framework provided by the Langmuir–Hinshelwood–Hougen–Watson formalism, using the advanced concept of semi-competitive adsorption. The classical LHHW rate equations for competitive and non-competitive adsorption between the hydrogen and large organic species were matched as asymptotic cases. Statistical results clearly demonstrated the inadequacy of the model approaching non-competitive adsorption to describe the experimental data, but the residual sum of squares between experimental data and model predictions was insufficient to discriminate between the kinetic models based on competitive and semi-competitive adsorption. However, the model considering semi-competitive adsorption gave additional indication that the adsorbed molecules of cis- and trans-methyl oleate could cover up to eleven surface sites, which is in excellent agreement with a rough estimate from primary molecular modeling. This feature seems to be the most fascinating result, since it is factual and unattainable from the classical LHHW approaches. Results and distinctive features characterizing this advanced approach are highlighted. Some insights to improve parameter estimation and adsorption model discrimination are also pointed out.
Fil: Cabrera, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Materia
Isomerization
Hydrogenation
Semi-Competitive Adsorption
Methyl Oleate
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/24739

id CONICETDig_75b4594ba8b06d276406dab4c26a49db
oai_identifier_str oai:ri.conicet.gov.ar:11336/24739
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Methyl Oleate Isomerization and Hydrogenation over Ni/α-Al2O3: A Kinetic Study Recognizing Differences in the Molecular Size of Hydrogen and Organic SpeciesCabrera, Maria InesGrau, Ricardo José AntonioIsomerizationHydrogenationSemi-Competitive AdsorptionMethyl Oleatehttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The kinetics of the hydrogenation and cis/trans isomerization of methyl oleate on a Ni/a-Al2O3 catalyst was studied in the absence of mass-transport limitation, at 398K=T=443Kand370kPa = PH2 = 650 kPa. On the basis of the Horiuti–Polanyi mechanism, involving a sigma half-hydrogenated surface intermediate, a kinetic model was derived in the framework provided by the Langmuir–Hinshelwood–Hougen–Watson formalism, using the advanced concept of semi-competitive adsorption. The classical LHHW rate equations for competitive and non-competitive adsorption between the hydrogen and large organic species were matched as asymptotic cases. Statistical results clearly demonstrated the inadequacy of the model approaching non-competitive adsorption to describe the experimental data, but the residual sum of squares between experimental data and model predictions was insufficient to discriminate between the kinetic models based on competitive and semi-competitive adsorption. However, the model considering semi-competitive adsorption gave additional indication that the adsorbed molecules of cis- and trans-methyl oleate could cover up to eleven surface sites, which is in excellent agreement with a rough estimate from primary molecular modeling. This feature seems to be the most fascinating result, since it is factual and unattainable from the classical LHHW approaches. Results and distinctive features characterizing this advanced approach are highlighted. Some insights to improve parameter estimation and adsorption model discrimination are also pointed out.Fil: Cabrera, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaElsevier Science2008-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/24739Cabrera, Maria Ines; Grau, Ricardo José Antonio; Methyl Oleate Isomerization and Hydrogenation over Ni/α-Al2O3: A Kinetic Study Recognizing Differences in the Molecular Size of Hydrogen and Organic Species; Elsevier Science; Journal of Molecular Catalysis A: Chemical; 287; 1-2; 2-2008; 24-321381-1169CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.molcata.2008.02.014info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1381116908001179info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:37Zoai:ri.conicet.gov.ar:11336/24739instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:37.261CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Methyl Oleate Isomerization and Hydrogenation over Ni/α-Al2O3: A Kinetic Study Recognizing Differences in the Molecular Size of Hydrogen and Organic Species
title Methyl Oleate Isomerization and Hydrogenation over Ni/α-Al2O3: A Kinetic Study Recognizing Differences in the Molecular Size of Hydrogen and Organic Species
spellingShingle Methyl Oleate Isomerization and Hydrogenation over Ni/α-Al2O3: A Kinetic Study Recognizing Differences in the Molecular Size of Hydrogen and Organic Species
Cabrera, Maria Ines
Isomerization
Hydrogenation
Semi-Competitive Adsorption
Methyl Oleate
title_short Methyl Oleate Isomerization and Hydrogenation over Ni/α-Al2O3: A Kinetic Study Recognizing Differences in the Molecular Size of Hydrogen and Organic Species
title_full Methyl Oleate Isomerization and Hydrogenation over Ni/α-Al2O3: A Kinetic Study Recognizing Differences in the Molecular Size of Hydrogen and Organic Species
title_fullStr Methyl Oleate Isomerization and Hydrogenation over Ni/α-Al2O3: A Kinetic Study Recognizing Differences in the Molecular Size of Hydrogen and Organic Species
title_full_unstemmed Methyl Oleate Isomerization and Hydrogenation over Ni/α-Al2O3: A Kinetic Study Recognizing Differences in the Molecular Size of Hydrogen and Organic Species
title_sort Methyl Oleate Isomerization and Hydrogenation over Ni/α-Al2O3: A Kinetic Study Recognizing Differences in the Molecular Size of Hydrogen and Organic Species
dc.creator.none.fl_str_mv Cabrera, Maria Ines
Grau, Ricardo José Antonio
author Cabrera, Maria Ines
author_facet Cabrera, Maria Ines
Grau, Ricardo José Antonio
author_role author
author2 Grau, Ricardo José Antonio
author2_role author
dc.subject.none.fl_str_mv Isomerization
Hydrogenation
Semi-Competitive Adsorption
Methyl Oleate
topic Isomerization
Hydrogenation
Semi-Competitive Adsorption
Methyl Oleate
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The kinetics of the hydrogenation and cis/trans isomerization of methyl oleate on a Ni/a-Al2O3 catalyst was studied in the absence of mass-transport limitation, at 398K=T=443Kand370kPa = PH2 = 650 kPa. On the basis of the Horiuti–Polanyi mechanism, involving a sigma half-hydrogenated surface intermediate, a kinetic model was derived in the framework provided by the Langmuir–Hinshelwood–Hougen–Watson formalism, using the advanced concept of semi-competitive adsorption. The classical LHHW rate equations for competitive and non-competitive adsorption between the hydrogen and large organic species were matched as asymptotic cases. Statistical results clearly demonstrated the inadequacy of the model approaching non-competitive adsorption to describe the experimental data, but the residual sum of squares between experimental data and model predictions was insufficient to discriminate between the kinetic models based on competitive and semi-competitive adsorption. However, the model considering semi-competitive adsorption gave additional indication that the adsorbed molecules of cis- and trans-methyl oleate could cover up to eleven surface sites, which is in excellent agreement with a rough estimate from primary molecular modeling. This feature seems to be the most fascinating result, since it is factual and unattainable from the classical LHHW approaches. Results and distinctive features characterizing this advanced approach are highlighted. Some insights to improve parameter estimation and adsorption model discrimination are also pointed out.
Fil: Cabrera, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
description The kinetics of the hydrogenation and cis/trans isomerization of methyl oleate on a Ni/a-Al2O3 catalyst was studied in the absence of mass-transport limitation, at 398K=T=443Kand370kPa = PH2 = 650 kPa. On the basis of the Horiuti–Polanyi mechanism, involving a sigma half-hydrogenated surface intermediate, a kinetic model was derived in the framework provided by the Langmuir–Hinshelwood–Hougen–Watson formalism, using the advanced concept of semi-competitive adsorption. The classical LHHW rate equations for competitive and non-competitive adsorption between the hydrogen and large organic species were matched as asymptotic cases. Statistical results clearly demonstrated the inadequacy of the model approaching non-competitive adsorption to describe the experimental data, but the residual sum of squares between experimental data and model predictions was insufficient to discriminate between the kinetic models based on competitive and semi-competitive adsorption. However, the model considering semi-competitive adsorption gave additional indication that the adsorbed molecules of cis- and trans-methyl oleate could cover up to eleven surface sites, which is in excellent agreement with a rough estimate from primary molecular modeling. This feature seems to be the most fascinating result, since it is factual and unattainable from the classical LHHW approaches. Results and distinctive features characterizing this advanced approach are highlighted. Some insights to improve parameter estimation and adsorption model discrimination are also pointed out.
publishDate 2008
dc.date.none.fl_str_mv 2008-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/24739
Cabrera, Maria Ines; Grau, Ricardo José Antonio; Methyl Oleate Isomerization and Hydrogenation over Ni/α-Al2O3: A Kinetic Study Recognizing Differences in the Molecular Size of Hydrogen and Organic Species; Elsevier Science; Journal of Molecular Catalysis A: Chemical; 287; 1-2; 2-2008; 24-32
1381-1169
CONICET Digital
CONICET
url http://hdl.handle.net/11336/24739
identifier_str_mv Cabrera, Maria Ines; Grau, Ricardo José Antonio; Methyl Oleate Isomerization and Hydrogenation over Ni/α-Al2O3: A Kinetic Study Recognizing Differences in the Molecular Size of Hydrogen and Organic Species; Elsevier Science; Journal of Molecular Catalysis A: Chemical; 287; 1-2; 2-2008; 24-32
1381-1169
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.molcata.2008.02.014
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1381116908001179
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614340127227904
score 13.070432