Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation
- Autores
- Cabrera, Maria Ines; Grau, Ricardo José Antonio
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Kinetic studies of the catalytic hydrogenation of vegetable oils and fatty acid methyl esters in liquid-phase are commonly performed in the framework of the Langmuir-Hinshelwood-Hougen-Watson (LHHW) formalism using the competitive and non-competitive adsorption models, which are certainly extreme. Based on the advanced concepts of multicentered adsorption and semi-competitive adsorption, mechanistic kinetic models including a distinction between occupiedsites and covered-sites by the large molecules of FAMEs were formulated without expressing an opinion a priori on whether the adsorption regime is competitive or non- competitive. The theoretical basis of the advanced kinetic modeling is described and successfully applied to three application examples of increasing complexity, including: (a) the hydrogenation of methyl oleate without cis-trans isomerization distinction, (b) the cis-trans isomerization and hydrogenation of the methyl oleate, and (c) the methyl linoleate hydrogenation including the cis-trans isomerization of the methyl oleate. The kinetic studies were carried out using a Ni/-Al2O3, at 398, 413, 428 and 443 K, under isobaric conditions at hydrogen pressures of 370, 510, and 650 kPa, in the absence of mass-transport limitation. After model discrimination based on statistical analysis and taking into account the physical meaning of the estimated parameters, semi-competitive adsorption models were found to be more realistic than the classical LHHW competitive and non-competitive ones, mainly because they give additional information indicating that the adsorbed molecules of methyl linoleate and methyl oleate could cover up to 12 and 7 surface sites, respectively. These values are in adequate agreement with those expected from a rough computational simulation and seem to be the most interesting result, since they are factual and unattainable from the classical LHHW approaches.-Al2O3, at 398, 413, 428 and 443 K, under isobaric conditions at hydrogen pressures of 370, 510, and 650 kPa, in the absence of mass-transport limitation. After model discrimination based on statistical analysis and taking into account the physical meaning of the estimated parameters, semi-competitive adsorption models were found to be more realistic than the classical LHHW competitive and non-competitive ones, mainly because they give additional information indicating that the adsorbed molecules of methyl linoleate and methyl oleate could cover up to 12 and 7 surface sites, respectively. These values are in adequate agreement with those expected from a rough computational simulation and seem to be the most interesting result, since they are factual and unattainable from the classical LHHW approaches.
Fil: Cabrera, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
Hydrogenation
Fatty Acid Methyl Esters
Kinetic Modeling
Semicompetitive Adsorption - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/25347
Ver los metadatos del registro completo
| id |
CONICETDig_b61518a4d18fc7e149ff5681fbdcb183 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/25347 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters HydrogenationCabrera, Maria InesGrau, Ricardo José AntonioHydrogenationFatty Acid Methyl EstersKinetic ModelingSemicompetitive Adsorptionhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Kinetic studies of the catalytic hydrogenation of vegetable oils and fatty acid methyl esters in liquid-phase are commonly performed in the framework of the Langmuir-Hinshelwood-Hougen-Watson (LHHW) formalism using the competitive and non-competitive adsorption models, which are certainly extreme. Based on the advanced concepts of multicentered adsorption and semi-competitive adsorption, mechanistic kinetic models including a distinction between occupiedsites and covered-sites by the large molecules of FAMEs were formulated without expressing an opinion a priori on whether the adsorption regime is competitive or non- competitive. The theoretical basis of the advanced kinetic modeling is described and successfully applied to three application examples of increasing complexity, including: (a) the hydrogenation of methyl oleate without cis-trans isomerization distinction, (b) the cis-trans isomerization and hydrogenation of the methyl oleate, and (c) the methyl linoleate hydrogenation including the cis-trans isomerization of the methyl oleate. The kinetic studies were carried out using a Ni/-Al2O3, at 398, 413, 428 and 443 K, under isobaric conditions at hydrogen pressures of 370, 510, and 650 kPa, in the absence of mass-transport limitation. After model discrimination based on statistical analysis and taking into account the physical meaning of the estimated parameters, semi-competitive adsorption models were found to be more realistic than the classical LHHW competitive and non-competitive ones, mainly because they give additional information indicating that the adsorbed molecules of methyl linoleate and methyl oleate could cover up to 12 and 7 surface sites, respectively. These values are in adequate agreement with those expected from a rough computational simulation and seem to be the most interesting result, since they are factual and unattainable from the classical LHHW approaches.-Al2O3, at 398, 413, 428 and 443 K, under isobaric conditions at hydrogen pressures of 370, 510, and 650 kPa, in the absence of mass-transport limitation. After model discrimination based on statistical analysis and taking into account the physical meaning of the estimated parameters, semi-competitive adsorption models were found to be more realistic than the classical LHHW competitive and non-competitive ones, mainly because they give additional information indicating that the adsorbed molecules of methyl linoleate and methyl oleate could cover up to 12 and 7 surface sites, respectively. These values are in adequate agreement with those expected from a rough computational simulation and seem to be the most interesting result, since they are factual and unattainable from the classical LHHW approaches.Fil: Cabrera, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaDe gruyter2008-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25347Cabrera, Maria Ines; Grau, Ricardo José Antonio; Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation; De gruyter; International Journal of Chemical Reactor Engineering; 6; 1; 9-2008; 70-1111542-6580CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2202/1542-6580.1718info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ijcre.2008.6.1/ijcre.2008.6.1.1718/ijcre.2008.6.1.1718.xmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:22:55Zoai:ri.conicet.gov.ar:11336/25347instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:22:55.59CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation |
| title |
Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation |
| spellingShingle |
Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation Cabrera, Maria Ines Hydrogenation Fatty Acid Methyl Esters Kinetic Modeling Semicompetitive Adsorption |
| title_short |
Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation |
| title_full |
Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation |
| title_fullStr |
Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation |
| title_full_unstemmed |
Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation |
| title_sort |
Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation |
| dc.creator.none.fl_str_mv |
Cabrera, Maria Ines Grau, Ricardo José Antonio |
| author |
Cabrera, Maria Ines |
| author_facet |
Cabrera, Maria Ines Grau, Ricardo José Antonio |
| author_role |
author |
| author2 |
Grau, Ricardo José Antonio |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Hydrogenation Fatty Acid Methyl Esters Kinetic Modeling Semicompetitive Adsorption |
| topic |
Hydrogenation Fatty Acid Methyl Esters Kinetic Modeling Semicompetitive Adsorption |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Kinetic studies of the catalytic hydrogenation of vegetable oils and fatty acid methyl esters in liquid-phase are commonly performed in the framework of the Langmuir-Hinshelwood-Hougen-Watson (LHHW) formalism using the competitive and non-competitive adsorption models, which are certainly extreme. Based on the advanced concepts of multicentered adsorption and semi-competitive adsorption, mechanistic kinetic models including a distinction between occupiedsites and covered-sites by the large molecules of FAMEs were formulated without expressing an opinion a priori on whether the adsorption regime is competitive or non- competitive. The theoretical basis of the advanced kinetic modeling is described and successfully applied to three application examples of increasing complexity, including: (a) the hydrogenation of methyl oleate without cis-trans isomerization distinction, (b) the cis-trans isomerization and hydrogenation of the methyl oleate, and (c) the methyl linoleate hydrogenation including the cis-trans isomerization of the methyl oleate. The kinetic studies were carried out using a Ni/-Al2O3, at 398, 413, 428 and 443 K, under isobaric conditions at hydrogen pressures of 370, 510, and 650 kPa, in the absence of mass-transport limitation. After model discrimination based on statistical analysis and taking into account the physical meaning of the estimated parameters, semi-competitive adsorption models were found to be more realistic than the classical LHHW competitive and non-competitive ones, mainly because they give additional information indicating that the adsorbed molecules of methyl linoleate and methyl oleate could cover up to 12 and 7 surface sites, respectively. These values are in adequate agreement with those expected from a rough computational simulation and seem to be the most interesting result, since they are factual and unattainable from the classical LHHW approaches.-Al2O3, at 398, 413, 428 and 443 K, under isobaric conditions at hydrogen pressures of 370, 510, and 650 kPa, in the absence of mass-transport limitation. After model discrimination based on statistical analysis and taking into account the physical meaning of the estimated parameters, semi-competitive adsorption models were found to be more realistic than the classical LHHW competitive and non-competitive ones, mainly because they give additional information indicating that the adsorbed molecules of methyl linoleate and methyl oleate could cover up to 12 and 7 surface sites, respectively. These values are in adequate agreement with those expected from a rough computational simulation and seem to be the most interesting result, since they are factual and unattainable from the classical LHHW approaches. Fil: Cabrera, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
| description |
Kinetic studies of the catalytic hydrogenation of vegetable oils and fatty acid methyl esters in liquid-phase are commonly performed in the framework of the Langmuir-Hinshelwood-Hougen-Watson (LHHW) formalism using the competitive and non-competitive adsorption models, which are certainly extreme. Based on the advanced concepts of multicentered adsorption and semi-competitive adsorption, mechanistic kinetic models including a distinction between occupiedsites and covered-sites by the large molecules of FAMEs were formulated without expressing an opinion a priori on whether the adsorption regime is competitive or non- competitive. The theoretical basis of the advanced kinetic modeling is described and successfully applied to three application examples of increasing complexity, including: (a) the hydrogenation of methyl oleate without cis-trans isomerization distinction, (b) the cis-trans isomerization and hydrogenation of the methyl oleate, and (c) the methyl linoleate hydrogenation including the cis-trans isomerization of the methyl oleate. The kinetic studies were carried out using a Ni/-Al2O3, at 398, 413, 428 and 443 K, under isobaric conditions at hydrogen pressures of 370, 510, and 650 kPa, in the absence of mass-transport limitation. After model discrimination based on statistical analysis and taking into account the physical meaning of the estimated parameters, semi-competitive adsorption models were found to be more realistic than the classical LHHW competitive and non-competitive ones, mainly because they give additional information indicating that the adsorbed molecules of methyl linoleate and methyl oleate could cover up to 12 and 7 surface sites, respectively. These values are in adequate agreement with those expected from a rough computational simulation and seem to be the most interesting result, since they are factual and unattainable from the classical LHHW approaches.-Al2O3, at 398, 413, 428 and 443 K, under isobaric conditions at hydrogen pressures of 370, 510, and 650 kPa, in the absence of mass-transport limitation. After model discrimination based on statistical analysis and taking into account the physical meaning of the estimated parameters, semi-competitive adsorption models were found to be more realistic than the classical LHHW competitive and non-competitive ones, mainly because they give additional information indicating that the adsorbed molecules of methyl linoleate and methyl oleate could cover up to 12 and 7 surface sites, respectively. These values are in adequate agreement with those expected from a rough computational simulation and seem to be the most interesting result, since they are factual and unattainable from the classical LHHW approaches. |
| publishDate |
2008 |
| dc.date.none.fl_str_mv |
2008-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/25347 Cabrera, Maria Ines; Grau, Ricardo José Antonio; Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation; De gruyter; International Journal of Chemical Reactor Engineering; 6; 1; 9-2008; 70-111 1542-6580 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/25347 |
| identifier_str_mv |
Cabrera, Maria Ines; Grau, Ricardo José Antonio; Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation; De gruyter; International Journal of Chemical Reactor Engineering; 6; 1; 9-2008; 70-111 1542-6580 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.2202/1542-6580.1718 info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ijcre.2008.6.1/ijcre.2008.6.1.1718/ijcre.2008.6.1.1718.xml |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
De gruyter |
| publisher.none.fl_str_mv |
De gruyter |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846082632181350400 |
| score |
13.22299 |