Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation

Autores
Cabrera, Maria Ines; Grau, Ricardo José Antonio
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Kinetic studies of the catalytic hydrogenation of vegetable oils and fatty acid methyl esters in liquid-phase are commonly performed in the framework of the Langmuir-Hinshelwood-Hougen-Watson (LHHW) formalism using the competitive and non-competitive adsorption models, which are certainly extreme. Based on the advanced concepts of multicentered adsorption and semi-competitive adsorption, mechanistic kinetic models including a distinction between occupiedsites and covered-sites by the large molecules of FAMEs were formulated without expressing an opinion a priori on whether the adsorption regime is competitive or non- competitive. The theoretical basis of the advanced kinetic modeling is described and successfully applied to three application examples of increasing complexity, including: (a) the hydrogenation of methyl oleate without cis-trans isomerization distinction, (b) the cis-trans isomerization and hydrogenation of the methyl oleate, and (c) the methyl linoleate hydrogenation including the cis-trans isomerization of the methyl oleate. The kinetic studies were carried out using a Ni/-Al2O3, at 398, 413, 428 and 443 K, under isobaric conditions at hydrogen pressures of 370, 510, and 650 kPa, in the absence of mass-transport limitation. After model discrimination based on statistical analysis and taking into account the physical meaning of the estimated parameters, semi-competitive adsorption models were found to be more realistic than the classical LHHW competitive and non-competitive ones, mainly because they give additional information indicating that the adsorbed molecules of methyl linoleate and methyl oleate could cover up to 12 and 7 surface sites, respectively. These values are in adequate agreement with those expected from a rough computational simulation and seem to be the most interesting result, since they are factual and unattainable from the classical LHHW approaches.-Al2O3, at 398, 413, 428 and 443 K, under isobaric conditions at hydrogen pressures of 370, 510, and 650 kPa, in the absence of mass-transport limitation. After model discrimination based on statistical analysis and taking into account the physical meaning of the estimated parameters, semi-competitive adsorption models were found to be more realistic than the classical LHHW competitive and non-competitive ones, mainly because they give additional information indicating that the adsorbed molecules of methyl linoleate and methyl oleate could cover up to 12 and 7 surface sites, respectively. These values are in adequate agreement with those expected from a rough computational simulation and seem to be the most interesting result, since they are factual and unattainable from the classical LHHW approaches.
Fil: Cabrera, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Materia
Hydrogenation
Fatty Acid Methyl Esters
Kinetic Modeling
Semicompetitive Adsorption
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/25347

id CONICETDig_b61518a4d18fc7e149ff5681fbdcb183
oai_identifier_str oai:ri.conicet.gov.ar:11336/25347
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters HydrogenationCabrera, Maria InesGrau, Ricardo José AntonioHydrogenationFatty Acid Methyl EstersKinetic ModelingSemicompetitive Adsorptionhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Kinetic studies of the catalytic hydrogenation of vegetable oils and fatty acid methyl esters in liquid-phase are commonly performed in the framework of the Langmuir-Hinshelwood-Hougen-Watson (LHHW) formalism using the competitive and non-competitive adsorption models, which are certainly extreme. Based on the advanced concepts of multicentered adsorption and semi-competitive adsorption, mechanistic kinetic models including a distinction between occupiedsites and covered-sites by the large molecules of FAMEs were formulated without expressing an opinion a priori on whether the adsorption regime is competitive or non- competitive. The theoretical basis of the advanced kinetic modeling is described and successfully applied to three application examples of increasing complexity, including: (a) the hydrogenation of methyl oleate without cis-trans isomerization distinction, (b) the cis-trans isomerization and hydrogenation of the methyl oleate, and (c) the methyl linoleate hydrogenation including the cis-trans isomerization of the methyl oleate. The kinetic studies were carried out using a Ni/-Al2O3, at 398, 413, 428 and 443 K, under isobaric conditions at hydrogen pressures of 370, 510, and 650 kPa, in the absence of mass-transport limitation. After model discrimination based on statistical analysis and taking into account the physical meaning of the estimated parameters, semi-competitive adsorption models were found to be more realistic than the classical LHHW competitive and non-competitive ones, mainly because they give additional information indicating that the adsorbed molecules of methyl linoleate and methyl oleate could cover up to 12 and 7 surface sites, respectively. These values are in adequate agreement with those expected from a rough computational simulation and seem to be the most interesting result, since they are factual and unattainable from the classical LHHW approaches.-Al2O3, at 398, 413, 428 and 443 K, under isobaric conditions at hydrogen pressures of 370, 510, and 650 kPa, in the absence of mass-transport limitation. After model discrimination based on statistical analysis and taking into account the physical meaning of the estimated parameters, semi-competitive adsorption models were found to be more realistic than the classical LHHW competitive and non-competitive ones, mainly because they give additional information indicating that the adsorbed molecules of methyl linoleate and methyl oleate could cover up to 12 and 7 surface sites, respectively. These values are in adequate agreement with those expected from a rough computational simulation and seem to be the most interesting result, since they are factual and unattainable from the classical LHHW approaches.Fil: Cabrera, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaDe gruyter2008-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25347Cabrera, Maria Ines; Grau, Ricardo José Antonio; Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation; De gruyter; International Journal of Chemical Reactor Engineering; 6; 1; 9-2008; 70-1111542-6580CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2202/1542-6580.1718info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ijcre.2008.6.1/ijcre.2008.6.1.1718/ijcre.2008.6.1.1718.xmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:32Zoai:ri.conicet.gov.ar:11336/25347instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:33.153CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation
title Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation
spellingShingle Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation
Cabrera, Maria Ines
Hydrogenation
Fatty Acid Methyl Esters
Kinetic Modeling
Semicompetitive Adsorption
title_short Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation
title_full Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation
title_fullStr Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation
title_full_unstemmed Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation
title_sort Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation
dc.creator.none.fl_str_mv Cabrera, Maria Ines
Grau, Ricardo José Antonio
author Cabrera, Maria Ines
author_facet Cabrera, Maria Ines
Grau, Ricardo José Antonio
author_role author
author2 Grau, Ricardo José Antonio
author2_role author
dc.subject.none.fl_str_mv Hydrogenation
Fatty Acid Methyl Esters
Kinetic Modeling
Semicompetitive Adsorption
topic Hydrogenation
Fatty Acid Methyl Esters
Kinetic Modeling
Semicompetitive Adsorption
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Kinetic studies of the catalytic hydrogenation of vegetable oils and fatty acid methyl esters in liquid-phase are commonly performed in the framework of the Langmuir-Hinshelwood-Hougen-Watson (LHHW) formalism using the competitive and non-competitive adsorption models, which are certainly extreme. Based on the advanced concepts of multicentered adsorption and semi-competitive adsorption, mechanistic kinetic models including a distinction between occupiedsites and covered-sites by the large molecules of FAMEs were formulated without expressing an opinion a priori on whether the adsorption regime is competitive or non- competitive. The theoretical basis of the advanced kinetic modeling is described and successfully applied to three application examples of increasing complexity, including: (a) the hydrogenation of methyl oleate without cis-trans isomerization distinction, (b) the cis-trans isomerization and hydrogenation of the methyl oleate, and (c) the methyl linoleate hydrogenation including the cis-trans isomerization of the methyl oleate. The kinetic studies were carried out using a Ni/-Al2O3, at 398, 413, 428 and 443 K, under isobaric conditions at hydrogen pressures of 370, 510, and 650 kPa, in the absence of mass-transport limitation. After model discrimination based on statistical analysis and taking into account the physical meaning of the estimated parameters, semi-competitive adsorption models were found to be more realistic than the classical LHHW competitive and non-competitive ones, mainly because they give additional information indicating that the adsorbed molecules of methyl linoleate and methyl oleate could cover up to 12 and 7 surface sites, respectively. These values are in adequate agreement with those expected from a rough computational simulation and seem to be the most interesting result, since they are factual and unattainable from the classical LHHW approaches.-Al2O3, at 398, 413, 428 and 443 K, under isobaric conditions at hydrogen pressures of 370, 510, and 650 kPa, in the absence of mass-transport limitation. After model discrimination based on statistical analysis and taking into account the physical meaning of the estimated parameters, semi-competitive adsorption models were found to be more realistic than the classical LHHW competitive and non-competitive ones, mainly because they give additional information indicating that the adsorbed molecules of methyl linoleate and methyl oleate could cover up to 12 and 7 surface sites, respectively. These values are in adequate agreement with those expected from a rough computational simulation and seem to be the most interesting result, since they are factual and unattainable from the classical LHHW approaches.
Fil: Cabrera, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
description Kinetic studies of the catalytic hydrogenation of vegetable oils and fatty acid methyl esters in liquid-phase are commonly performed in the framework of the Langmuir-Hinshelwood-Hougen-Watson (LHHW) formalism using the competitive and non-competitive adsorption models, which are certainly extreme. Based on the advanced concepts of multicentered adsorption and semi-competitive adsorption, mechanistic kinetic models including a distinction between occupiedsites and covered-sites by the large molecules of FAMEs were formulated without expressing an opinion a priori on whether the adsorption regime is competitive or non- competitive. The theoretical basis of the advanced kinetic modeling is described and successfully applied to three application examples of increasing complexity, including: (a) the hydrogenation of methyl oleate without cis-trans isomerization distinction, (b) the cis-trans isomerization and hydrogenation of the methyl oleate, and (c) the methyl linoleate hydrogenation including the cis-trans isomerization of the methyl oleate. The kinetic studies were carried out using a Ni/-Al2O3, at 398, 413, 428 and 443 K, under isobaric conditions at hydrogen pressures of 370, 510, and 650 kPa, in the absence of mass-transport limitation. After model discrimination based on statistical analysis and taking into account the physical meaning of the estimated parameters, semi-competitive adsorption models were found to be more realistic than the classical LHHW competitive and non-competitive ones, mainly because they give additional information indicating that the adsorbed molecules of methyl linoleate and methyl oleate could cover up to 12 and 7 surface sites, respectively. These values are in adequate agreement with those expected from a rough computational simulation and seem to be the most interesting result, since they are factual and unattainable from the classical LHHW approaches.-Al2O3, at 398, 413, 428 and 443 K, under isobaric conditions at hydrogen pressures of 370, 510, and 650 kPa, in the absence of mass-transport limitation. After model discrimination based on statistical analysis and taking into account the physical meaning of the estimated parameters, semi-competitive adsorption models were found to be more realistic than the classical LHHW competitive and non-competitive ones, mainly because they give additional information indicating that the adsorbed molecules of methyl linoleate and methyl oleate could cover up to 12 and 7 surface sites, respectively. These values are in adequate agreement with those expected from a rough computational simulation and seem to be the most interesting result, since they are factual and unattainable from the classical LHHW approaches.
publishDate 2008
dc.date.none.fl_str_mv 2008-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/25347
Cabrera, Maria Ines; Grau, Ricardo José Antonio; Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation; De gruyter; International Journal of Chemical Reactor Engineering; 6; 1; 9-2008; 70-111
1542-6580
CONICET Digital
CONICET
url http://hdl.handle.net/11336/25347
identifier_str_mv Cabrera, Maria Ines; Grau, Ricardo José Antonio; Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation; De gruyter; International Journal of Chemical Reactor Engineering; 6; 1; 9-2008; 70-111
1542-6580
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.2202/1542-6580.1718
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ijcre.2008.6.1/ijcre.2008.6.1.1718/ijcre.2008.6.1.1718.xml
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv De gruyter
publisher.none.fl_str_mv De gruyter
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613068810616832
score 13.070432