New complexity results on Roman {2}-domination

Autores
Leoni, Valeria Alejandra; Fernández, Lara Iliana
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The study of a variant of Roman domination was initiated by Chellali et al. [Discrete Appl. Math. 204 (2016) 22- 28]. Given a graph G with vertex set V, a Roman {2}-dominating function f: V → {0, 1, 2} has the property that for every vertex v ϵ V with f(v) = 0, either there exists a vertex u adjacent to v with f(u) = 2, or at least two vertices x, y adjacent to v with f(x) = f(y) = 1. The weight of a Roman {2}-dominating function is the value f(V) = ∑ vϵ V f(v). The minimum weight of a Roman {2}-dominating function is called the Roman {2}-domination number and is denoted by γ{R2}(G). In this work we find several NP-complete instances of the Roman {2}-domination problem: chordal graphs, bipartite planar graphs, chordal bipartite graphs, bipartite with maximum degree 3 graphs, among others. A result by Chellali et al. [Discrete Appl. Math. 204 (2016) 22- 28] shows that γ{R2}(G) and the 2-rainbow domination number of G coincide when G is a tree, and thus, the linear time algorithm for k-rainbow domination due to Brešar et al. [Taiwan J. Math. 12 (2008) 213- 225] can be followed to compute γ{R2}(G). In this work we develop an efficient algorithm that is independent of k-rainbow domination and computes the Roman {2}-domination number on a subclass of trees called caterpillars.
Fil: Leoni, Valeria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ciencias Básicas; Argentina
Fil: Fernández, Lara Iliana. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
CATERPILLAR
DECOMPOSITION
EFFICIENT ALGORITHM
NP-COMPLETE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/223174

id CONICETDig_756dd5fa1cf62e1ad734f67d472ad18f
oai_identifier_str oai:ri.conicet.gov.ar:11336/223174
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling New complexity results on Roman {2}-dominationLeoni, Valeria AlejandraFernández, Lara IlianaCATERPILLARDECOMPOSITIONEFFICIENT ALGORITHMNP-COMPLETEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The study of a variant of Roman domination was initiated by Chellali et al. [Discrete Appl. Math. 204 (2016) 22- 28]. Given a graph G with vertex set V, a Roman {2}-dominating function f: V → {0, 1, 2} has the property that for every vertex v ϵ V with f(v) = 0, either there exists a vertex u adjacent to v with f(u) = 2, or at least two vertices x, y adjacent to v with f(x) = f(y) = 1. The weight of a Roman {2}-dominating function is the value f(V) = ∑ vϵ V f(v). The minimum weight of a Roman {2}-dominating function is called the Roman {2}-domination number and is denoted by γ{R2}(G). In this work we find several NP-complete instances of the Roman {2}-domination problem: chordal graphs, bipartite planar graphs, chordal bipartite graphs, bipartite with maximum degree 3 graphs, among others. A result by Chellali et al. [Discrete Appl. Math. 204 (2016) 22- 28] shows that γ{R2}(G) and the 2-rainbow domination number of G coincide when G is a tree, and thus, the linear time algorithm for k-rainbow domination due to Brešar et al. [Taiwan J. Math. 12 (2008) 213- 225] can be followed to compute γ{R2}(G). In this work we develop an efficient algorithm that is independent of k-rainbow domination and computes the Roman {2}-domination number on a subclass of trees called caterpillars.Fil: Leoni, Valeria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ciencias Básicas; ArgentinaFil: Fernández, Lara Iliana. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaEDP Sciences2023-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/223174Leoni, Valeria Alejandra; Fernández, Lara Iliana; New complexity results on Roman {2}-domination; EDP Sciences; Rairo - Recherche Operationnelle (operations Research); 57; 4; 7-2023; 1905-19120399-0559CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/ro/2023049info:eu-repo/semantics/altIdentifier/url/https://www.rairo-ro.org/articles/ro/abs/2023/04/ro220776/ro220776.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:25:05Zoai:ri.conicet.gov.ar:11336/223174instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:25:05.588CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv New complexity results on Roman {2}-domination
title New complexity results on Roman {2}-domination
spellingShingle New complexity results on Roman {2}-domination
Leoni, Valeria Alejandra
CATERPILLAR
DECOMPOSITION
EFFICIENT ALGORITHM
NP-COMPLETE
title_short New complexity results on Roman {2}-domination
title_full New complexity results on Roman {2}-domination
title_fullStr New complexity results on Roman {2}-domination
title_full_unstemmed New complexity results on Roman {2}-domination
title_sort New complexity results on Roman {2}-domination
dc.creator.none.fl_str_mv Leoni, Valeria Alejandra
Fernández, Lara Iliana
author Leoni, Valeria Alejandra
author_facet Leoni, Valeria Alejandra
Fernández, Lara Iliana
author_role author
author2 Fernández, Lara Iliana
author2_role author
dc.subject.none.fl_str_mv CATERPILLAR
DECOMPOSITION
EFFICIENT ALGORITHM
NP-COMPLETE
topic CATERPILLAR
DECOMPOSITION
EFFICIENT ALGORITHM
NP-COMPLETE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The study of a variant of Roman domination was initiated by Chellali et al. [Discrete Appl. Math. 204 (2016) 22- 28]. Given a graph G with vertex set V, a Roman {2}-dominating function f: V → {0, 1, 2} has the property that for every vertex v ϵ V with f(v) = 0, either there exists a vertex u adjacent to v with f(u) = 2, or at least two vertices x, y adjacent to v with f(x) = f(y) = 1. The weight of a Roman {2}-dominating function is the value f(V) = ∑ vϵ V f(v). The minimum weight of a Roman {2}-dominating function is called the Roman {2}-domination number and is denoted by γ{R2}(G). In this work we find several NP-complete instances of the Roman {2}-domination problem: chordal graphs, bipartite planar graphs, chordal bipartite graphs, bipartite with maximum degree 3 graphs, among others. A result by Chellali et al. [Discrete Appl. Math. 204 (2016) 22- 28] shows that γ{R2}(G) and the 2-rainbow domination number of G coincide when G is a tree, and thus, the linear time algorithm for k-rainbow domination due to Brešar et al. [Taiwan J. Math. 12 (2008) 213- 225] can be followed to compute γ{R2}(G). In this work we develop an efficient algorithm that is independent of k-rainbow domination and computes the Roman {2}-domination number on a subclass of trees called caterpillars.
Fil: Leoni, Valeria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ciencias Básicas; Argentina
Fil: Fernández, Lara Iliana. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The study of a variant of Roman domination was initiated by Chellali et al. [Discrete Appl. Math. 204 (2016) 22- 28]. Given a graph G with vertex set V, a Roman {2}-dominating function f: V → {0, 1, 2} has the property that for every vertex v ϵ V with f(v) = 0, either there exists a vertex u adjacent to v with f(u) = 2, or at least two vertices x, y adjacent to v with f(x) = f(y) = 1. The weight of a Roman {2}-dominating function is the value f(V) = ∑ vϵ V f(v). The minimum weight of a Roman {2}-dominating function is called the Roman {2}-domination number and is denoted by γ{R2}(G). In this work we find several NP-complete instances of the Roman {2}-domination problem: chordal graphs, bipartite planar graphs, chordal bipartite graphs, bipartite with maximum degree 3 graphs, among others. A result by Chellali et al. [Discrete Appl. Math. 204 (2016) 22- 28] shows that γ{R2}(G) and the 2-rainbow domination number of G coincide when G is a tree, and thus, the linear time algorithm for k-rainbow domination due to Brešar et al. [Taiwan J. Math. 12 (2008) 213- 225] can be followed to compute γ{R2}(G). In this work we develop an efficient algorithm that is independent of k-rainbow domination and computes the Roman {2}-domination number on a subclass of trees called caterpillars.
publishDate 2023
dc.date.none.fl_str_mv 2023-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/223174
Leoni, Valeria Alejandra; Fernández, Lara Iliana; New complexity results on Roman {2}-domination; EDP Sciences; Rairo - Recherche Operationnelle (operations Research); 57; 4; 7-2023; 1905-1912
0399-0559
CONICET Digital
CONICET
url http://hdl.handle.net/11336/223174
identifier_str_mv Leoni, Valeria Alejandra; Fernández, Lara Iliana; New complexity results on Roman {2}-domination; EDP Sciences; Rairo - Recherche Operationnelle (operations Research); 57; 4; 7-2023; 1905-1912
0399-0559
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1051/ro/2023049
info:eu-repo/semantics/altIdentifier/url/https://www.rairo-ro.org/articles/ro/abs/2023/04/ro220776/ro220776.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614248676720640
score 13.070432