New complexity results on Roman {2}-domination
- Autores
- Leoni, Valeria Alejandra; Fernández, Lara Iliana
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The study of a variant of Roman domination was initiated by Chellali et al. [Discrete Appl. Math. 204 (2016) 22- 28]. Given a graph G with vertex set V, a Roman {2}-dominating function f: V → {0, 1, 2} has the property that for every vertex v ϵ V with f(v) = 0, either there exists a vertex u adjacent to v with f(u) = 2, or at least two vertices x, y adjacent to v with f(x) = f(y) = 1. The weight of a Roman {2}-dominating function is the value f(V) = ∑ vϵ V f(v). The minimum weight of a Roman {2}-dominating function is called the Roman {2}-domination number and is denoted by γ{R2}(G). In this work we find several NP-complete instances of the Roman {2}-domination problem: chordal graphs, bipartite planar graphs, chordal bipartite graphs, bipartite with maximum degree 3 graphs, among others. A result by Chellali et al. [Discrete Appl. Math. 204 (2016) 22- 28] shows that γ{R2}(G) and the 2-rainbow domination number of G coincide when G is a tree, and thus, the linear time algorithm for k-rainbow domination due to Brešar et al. [Taiwan J. Math. 12 (2008) 213- 225] can be followed to compute γ{R2}(G). In this work we develop an efficient algorithm that is independent of k-rainbow domination and computes the Roman {2}-domination number on a subclass of trees called caterpillars.
Fil: Leoni, Valeria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ciencias Básicas; Argentina
Fil: Fernández, Lara Iliana. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
CATERPILLAR
DECOMPOSITION
EFFICIENT ALGORITHM
NP-COMPLETE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/223174
Ver los metadatos del registro completo
id |
CONICETDig_756dd5fa1cf62e1ad734f67d472ad18f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/223174 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
New complexity results on Roman {2}-dominationLeoni, Valeria AlejandraFernández, Lara IlianaCATERPILLARDECOMPOSITIONEFFICIENT ALGORITHMNP-COMPLETEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The study of a variant of Roman domination was initiated by Chellali et al. [Discrete Appl. Math. 204 (2016) 22- 28]. Given a graph G with vertex set V, a Roman {2}-dominating function f: V → {0, 1, 2} has the property that for every vertex v ϵ V with f(v) = 0, either there exists a vertex u adjacent to v with f(u) = 2, or at least two vertices x, y adjacent to v with f(x) = f(y) = 1. The weight of a Roman {2}-dominating function is the value f(V) = ∑ vϵ V f(v). The minimum weight of a Roman {2}-dominating function is called the Roman {2}-domination number and is denoted by γ{R2}(G). In this work we find several NP-complete instances of the Roman {2}-domination problem: chordal graphs, bipartite planar graphs, chordal bipartite graphs, bipartite with maximum degree 3 graphs, among others. A result by Chellali et al. [Discrete Appl. Math. 204 (2016) 22- 28] shows that γ{R2}(G) and the 2-rainbow domination number of G coincide when G is a tree, and thus, the linear time algorithm for k-rainbow domination due to Brešar et al. [Taiwan J. Math. 12 (2008) 213- 225] can be followed to compute γ{R2}(G). In this work we develop an efficient algorithm that is independent of k-rainbow domination and computes the Roman {2}-domination number on a subclass of trees called caterpillars.Fil: Leoni, Valeria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ciencias Básicas; ArgentinaFil: Fernández, Lara Iliana. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaEDP Sciences2023-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/223174Leoni, Valeria Alejandra; Fernández, Lara Iliana; New complexity results on Roman {2}-domination; EDP Sciences; Rairo - Recherche Operationnelle (operations Research); 57; 4; 7-2023; 1905-19120399-0559CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/ro/2023049info:eu-repo/semantics/altIdentifier/url/https://www.rairo-ro.org/articles/ro/abs/2023/04/ro220776/ro220776.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:25:05Zoai:ri.conicet.gov.ar:11336/223174instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:25:05.588CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
New complexity results on Roman {2}-domination |
title |
New complexity results on Roman {2}-domination |
spellingShingle |
New complexity results on Roman {2}-domination Leoni, Valeria Alejandra CATERPILLAR DECOMPOSITION EFFICIENT ALGORITHM NP-COMPLETE |
title_short |
New complexity results on Roman {2}-domination |
title_full |
New complexity results on Roman {2}-domination |
title_fullStr |
New complexity results on Roman {2}-domination |
title_full_unstemmed |
New complexity results on Roman {2}-domination |
title_sort |
New complexity results on Roman {2}-domination |
dc.creator.none.fl_str_mv |
Leoni, Valeria Alejandra Fernández, Lara Iliana |
author |
Leoni, Valeria Alejandra |
author_facet |
Leoni, Valeria Alejandra Fernández, Lara Iliana |
author_role |
author |
author2 |
Fernández, Lara Iliana |
author2_role |
author |
dc.subject.none.fl_str_mv |
CATERPILLAR DECOMPOSITION EFFICIENT ALGORITHM NP-COMPLETE |
topic |
CATERPILLAR DECOMPOSITION EFFICIENT ALGORITHM NP-COMPLETE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The study of a variant of Roman domination was initiated by Chellali et al. [Discrete Appl. Math. 204 (2016) 22- 28]. Given a graph G with vertex set V, a Roman {2}-dominating function f: V → {0, 1, 2} has the property that for every vertex v ϵ V with f(v) = 0, either there exists a vertex u adjacent to v with f(u) = 2, or at least two vertices x, y adjacent to v with f(x) = f(y) = 1. The weight of a Roman {2}-dominating function is the value f(V) = ∑ vϵ V f(v). The minimum weight of a Roman {2}-dominating function is called the Roman {2}-domination number and is denoted by γ{R2}(G). In this work we find several NP-complete instances of the Roman {2}-domination problem: chordal graphs, bipartite planar graphs, chordal bipartite graphs, bipartite with maximum degree 3 graphs, among others. A result by Chellali et al. [Discrete Appl. Math. 204 (2016) 22- 28] shows that γ{R2}(G) and the 2-rainbow domination number of G coincide when G is a tree, and thus, the linear time algorithm for k-rainbow domination due to Brešar et al. [Taiwan J. Math. 12 (2008) 213- 225] can be followed to compute γ{R2}(G). In this work we develop an efficient algorithm that is independent of k-rainbow domination and computes the Roman {2}-domination number on a subclass of trees called caterpillars. Fil: Leoni, Valeria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ciencias Básicas; Argentina Fil: Fernández, Lara Iliana. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The study of a variant of Roman domination was initiated by Chellali et al. [Discrete Appl. Math. 204 (2016) 22- 28]. Given a graph G with vertex set V, a Roman {2}-dominating function f: V → {0, 1, 2} has the property that for every vertex v ϵ V with f(v) = 0, either there exists a vertex u adjacent to v with f(u) = 2, or at least two vertices x, y adjacent to v with f(x) = f(y) = 1. The weight of a Roman {2}-dominating function is the value f(V) = ∑ vϵ V f(v). The minimum weight of a Roman {2}-dominating function is called the Roman {2}-domination number and is denoted by γ{R2}(G). In this work we find several NP-complete instances of the Roman {2}-domination problem: chordal graphs, bipartite planar graphs, chordal bipartite graphs, bipartite with maximum degree 3 graphs, among others. A result by Chellali et al. [Discrete Appl. Math. 204 (2016) 22- 28] shows that γ{R2}(G) and the 2-rainbow domination number of G coincide when G is a tree, and thus, the linear time algorithm for k-rainbow domination due to Brešar et al. [Taiwan J. Math. 12 (2008) 213- 225] can be followed to compute γ{R2}(G). In this work we develop an efficient algorithm that is independent of k-rainbow domination and computes the Roman {2}-domination number on a subclass of trees called caterpillars. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/223174 Leoni, Valeria Alejandra; Fernández, Lara Iliana; New complexity results on Roman {2}-domination; EDP Sciences; Rairo - Recherche Operationnelle (operations Research); 57; 4; 7-2023; 1905-1912 0399-0559 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/223174 |
identifier_str_mv |
Leoni, Valeria Alejandra; Fernández, Lara Iliana; New complexity results on Roman {2}-domination; EDP Sciences; Rairo - Recherche Operationnelle (operations Research); 57; 4; 7-2023; 1905-1912 0399-0559 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1051/ro/2023049 info:eu-repo/semantics/altIdentifier/url/https://www.rairo-ro.org/articles/ro/abs/2023/04/ro220776/ro220776.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614248676720640 |
score |
13.070432 |