Existence and multiplicity of periodic solutions for a generalized hematopoiesis model

Autores
Amster, Pablo Gustavo; Balderrama, Rocio Celeste
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A generalization of the nonautonomous Mackey–Glass equation for the regulation of the hematopoiesis with several non-constant delays is studied. Using topological degree methods we prove, under appropriate conditions, the existence of multiple positive periodic solutions. Moreover, we show that the conditions are necessary, in the sense that if some sort of complementary conditions are assumed then the trivial equilibrium is a global attractor for the positive solutions and hence periodic solutions do not exist.
Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Balderrama, Rocio Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Materia
DEGREE THEORY
GLOBAL ATTRACTOR
HEMATOPOIESIS
MULTIPLICITY
NONLINEAR NONAUTONOMOUS DELAY DIFFERENTIAL EQUATIONS
POSITIVE PERIODIC SOLUTIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55575

id CONICETDig_af9aa2ab1f8e8fbd5ddca630d105a4fc
oai_identifier_str oai:ri.conicet.gov.ar:11336/55575
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Existence and multiplicity of periodic solutions for a generalized hematopoiesis modelAmster, Pablo GustavoBalderrama, Rocio CelesteDEGREE THEORYGLOBAL ATTRACTORHEMATOPOIESISMULTIPLICITYNONLINEAR NONAUTONOMOUS DELAY DIFFERENTIAL EQUATIONSPOSITIVE PERIODIC SOLUTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1A generalization of the nonautonomous Mackey–Glass equation for the regulation of the hematopoiesis with several non-constant delays is studied. Using topological degree methods we prove, under appropriate conditions, the existence of multiple positive periodic solutions. Moreover, we show that the conditions are necessary, in the sense that if some sort of complementary conditions are assumed then the trivial equilibrium is a global attractor for the positive solutions and hence periodic solutions do not exist.Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Balderrama, Rocio Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaSpringer Verlag Berlín2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55575Amster, Pablo Gustavo; Balderrama, Rocio Celeste; Existence and multiplicity of periodic solutions for a generalized hematopoiesis model; Springer Verlag Berlín; Journal of Applied Mathematics and Computing; 55; 1-2; 10-2017; 591-6071598-5865CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs12190-016-1051-6info:eu-repo/semantics/altIdentifier/doi/10.1007/s12190-016-1051-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:15:50Zoai:ri.conicet.gov.ar:11336/55575instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:15:51.19CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Existence and multiplicity of periodic solutions for a generalized hematopoiesis model
title Existence and multiplicity of periodic solutions for a generalized hematopoiesis model
spellingShingle Existence and multiplicity of periodic solutions for a generalized hematopoiesis model
Amster, Pablo Gustavo
DEGREE THEORY
GLOBAL ATTRACTOR
HEMATOPOIESIS
MULTIPLICITY
NONLINEAR NONAUTONOMOUS DELAY DIFFERENTIAL EQUATIONS
POSITIVE PERIODIC SOLUTIONS
title_short Existence and multiplicity of periodic solutions for a generalized hematopoiesis model
title_full Existence and multiplicity of periodic solutions for a generalized hematopoiesis model
title_fullStr Existence and multiplicity of periodic solutions for a generalized hematopoiesis model
title_full_unstemmed Existence and multiplicity of periodic solutions for a generalized hematopoiesis model
title_sort Existence and multiplicity of periodic solutions for a generalized hematopoiesis model
dc.creator.none.fl_str_mv Amster, Pablo Gustavo
Balderrama, Rocio Celeste
author Amster, Pablo Gustavo
author_facet Amster, Pablo Gustavo
Balderrama, Rocio Celeste
author_role author
author2 Balderrama, Rocio Celeste
author2_role author
dc.subject.none.fl_str_mv DEGREE THEORY
GLOBAL ATTRACTOR
HEMATOPOIESIS
MULTIPLICITY
NONLINEAR NONAUTONOMOUS DELAY DIFFERENTIAL EQUATIONS
POSITIVE PERIODIC SOLUTIONS
topic DEGREE THEORY
GLOBAL ATTRACTOR
HEMATOPOIESIS
MULTIPLICITY
NONLINEAR NONAUTONOMOUS DELAY DIFFERENTIAL EQUATIONS
POSITIVE PERIODIC SOLUTIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A generalization of the nonautonomous Mackey–Glass equation for the regulation of the hematopoiesis with several non-constant delays is studied. Using topological degree methods we prove, under appropriate conditions, the existence of multiple positive periodic solutions. Moreover, we show that the conditions are necessary, in the sense that if some sort of complementary conditions are assumed then the trivial equilibrium is a global attractor for the positive solutions and hence periodic solutions do not exist.
Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Balderrama, Rocio Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
description A generalization of the nonautonomous Mackey–Glass equation for the regulation of the hematopoiesis with several non-constant delays is studied. Using topological degree methods we prove, under appropriate conditions, the existence of multiple positive periodic solutions. Moreover, we show that the conditions are necessary, in the sense that if some sort of complementary conditions are assumed then the trivial equilibrium is a global attractor for the positive solutions and hence periodic solutions do not exist.
publishDate 2017
dc.date.none.fl_str_mv 2017-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55575
Amster, Pablo Gustavo; Balderrama, Rocio Celeste; Existence and multiplicity of periodic solutions for a generalized hematopoiesis model; Springer Verlag Berlín; Journal of Applied Mathematics and Computing; 55; 1-2; 10-2017; 591-607
1598-5865
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55575
identifier_str_mv Amster, Pablo Gustavo; Balderrama, Rocio Celeste; Existence and multiplicity of periodic solutions for a generalized hematopoiesis model; Springer Verlag Berlín; Journal of Applied Mathematics and Computing; 55; 1-2; 10-2017; 591-607
1598-5865
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs12190-016-1051-6
info:eu-repo/semantics/altIdentifier/doi/10.1007/s12190-016-1051-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Verlag Berlín
publisher.none.fl_str_mv Springer Verlag Berlín
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980857975930880
score 12.993085