Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo

Autores
Paccioretti, Pablo Ariel; Giannini Kurina, Franca; Balzarini, Monica Graciela
Año de publicación
2020
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
El objetivo de este estudio fue evaluar el desempeño del método de muestreo denominado hipercubo latino condicionado (cLHS) para identificar sitios convenientes para la obtención de datos de propiedades edáficas, que son usados en la construcción de modelos para el mapeo digital de una variable espacialmente distribuida, como es el carbono orgánico del suelo (COS). Dados N sitios con información sobre p variables explicativas (X), cLHS selecciona una muestra de n sitios de tal manera que la distribución multivariada de X sea completamente caracterizada. En este trabajo, se utilizaron datos de un estudio regional de suelos de la Provincia de Córdoba para comparar el desempeño del método de muestreo cLHS con el muestreo aleatorio simple (MAS). Para evaluar el método de muestreo, se muestreó repetidamente la población de sitios con datos y se ajustó, en cada muestra, la relación entre COS y las propiedades edafo-climáticas del sitio, usando tanto modelos de regresión lineal como el algoritmo random forest de aprendizaje automático. Se evaluaron los errores de predicción de cada método de muestreo con cada método estadístico usado para la predicción de COS en sitios donde esta variable no fue medida. El método de muestreo impactó la confiabilidad global de las predicciones derivadas de ambos modelos de regresión y los errores de predicción sitio-específicos. El método cLHS fue más eficiente que MAS para identificar sitios con suficiente variabilidad para estimar el modelo de la relación entre COS y propiedades edafo-climáticas, usado para predecir en otros sitios del territorio el valor del COS. El modelo estimado puede ser usado para mapeo digital de COS.
The objective of this study was to evaluate the performance of the sampling method called conditioned Latin Hypercube (cLHS) to identify convenient sites for obtaining data on edaphic properties that are used in the construction of models for digital mapping of a spatially distributed variable as it is soil organic carbon (SOC). Given N sites with information on p explanatory variables (X), cLHS selects a sample of n sites in such a way that the multivariate distribution of X is fully characterized. In this work, data from a regional soil study of the Province of Córdoba were used to compare the performance of the cLHS sampling method with simple random sampling (RS). To evaluate the sampling method, the population of sites with data was repeatedly sampled and, in each sample, the relationship between SOC and the edapho-climatic properties of the site was adjusted, using both linear regression models and random forest as machine learning algorithm. The prediction errors of each sampling method were evaluated with each statistical method used for the prediction of SOC in sites where this variable was not measured. The sampling method impacted the overall reliability of the predictions derived from both regression models and site-specific prediction errors. The cLHS method was more efficient than RS to identify sites with sufficient variability to estimate the model of the relationship between SOC and edapho-climatic properties, used to predict the SOC value in other sites of the territory. The estimated model can be used for digital mapping of SOC.
Fil: Paccioretti, Pablo Ariel. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina
Fil: Giannini Kurina, Franca. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina
Fil: Balzarini, Monica Graciela. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina
Materia
Muestreo por Hipercubo Latino Condicionado
Muestreo Aleatorio
Regresión Lineal Múltiple
Bosques Aleatorios
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/142287

id CONICETDig_73092c26adde9943864046217a755f0d
oai_identifier_str oai:ri.conicet.gov.ar:11336/142287
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Muestreo de sitios a escala regional para mapeo digital basado en propiedades de sueloSite sampling at regional scale for digital mapping based on soil propertiesPaccioretti, Pablo ArielGiannini Kurina, FrancaBalzarini, Monica GracielaMuestreo por Hipercubo Latino CondicionadoMuestreo AleatorioRegresión Lineal MúltipleBosques Aleatorioshttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4El objetivo de este estudio fue evaluar el desempeño del método de muestreo denominado hipercubo latino condicionado (cLHS) para identificar sitios convenientes para la obtención de datos de propiedades edáficas, que son usados en la construcción de modelos para el mapeo digital de una variable espacialmente distribuida, como es el carbono orgánico del suelo (COS). Dados N sitios con información sobre p variables explicativas (X), cLHS selecciona una muestra de n sitios de tal manera que la distribución multivariada de X sea completamente caracterizada. En este trabajo, se utilizaron datos de un estudio regional de suelos de la Provincia de Córdoba para comparar el desempeño del método de muestreo cLHS con el muestreo aleatorio simple (MAS). Para evaluar el método de muestreo, se muestreó repetidamente la población de sitios con datos y se ajustó, en cada muestra, la relación entre COS y las propiedades edafo-climáticas del sitio, usando tanto modelos de regresión lineal como el algoritmo random forest de aprendizaje automático. Se evaluaron los errores de predicción de cada método de muestreo con cada método estadístico usado para la predicción de COS en sitios donde esta variable no fue medida. El método de muestreo impactó la confiabilidad global de las predicciones derivadas de ambos modelos de regresión y los errores de predicción sitio-específicos. El método cLHS fue más eficiente que MAS para identificar sitios con suficiente variabilidad para estimar el modelo de la relación entre COS y propiedades edafo-climáticas, usado para predecir en otros sitios del territorio el valor del COS. El modelo estimado puede ser usado para mapeo digital de COS.The objective of this study was to evaluate the performance of the sampling method called conditioned Latin Hypercube (cLHS) to identify convenient sites for obtaining data on edaphic properties that are used in the construction of models for digital mapping of a spatially distributed variable as it is soil organic carbon (SOC). Given N sites with information on p explanatory variables (X), cLHS selects a sample of n sites in such a way that the multivariate distribution of X is fully characterized. In this work, data from a regional soil study of the Province of Córdoba were used to compare the performance of the cLHS sampling method with simple random sampling (RS). To evaluate the sampling method, the population of sites with data was repeatedly sampled and, in each sample, the relationship between SOC and the edapho-climatic properties of the site was adjusted, using both linear regression models and random forest as machine learning algorithm. The prediction errors of each sampling method were evaluated with each statistical method used for the prediction of SOC in sites where this variable was not measured. The sampling method impacted the overall reliability of the predictions derived from both regression models and site-specific prediction errors. The cLHS method was more efficient than RS to identify sites with sufficient variability to estimate the model of the relationship between SOC and edapho-climatic properties, used to predict the SOC value in other sites of the territory. The estimated model can be used for digital mapping of SOC.Fil: Paccioretti, Pablo Ariel. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; ArgentinaFil: Giannini Kurina, Franca. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; ArgentinaFil: Balzarini, Monica Graciela. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; ArgentinaAsociación Argentina de la Ciencia del Suelo2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/142287Paccioretti, Pablo Ariel; Giannini Kurina, Franca; Balzarini, Monica Graciela; Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo; Asociación Argentina de la Ciencia del Suelo; Ciencia del Suelo; 38; 2; 12-2020; 310-3200326-31691850-2067CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://www.suelos.org.ar/publicaciones/Volumen38n2/Volumen38n2/10-576_Muestreo_de_sitios_WBIS.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:11:12Zoai:ri.conicet.gov.ar:11336/142287instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:11:12.655CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo
Site sampling at regional scale for digital mapping based on soil properties
title Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo
spellingShingle Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo
Paccioretti, Pablo Ariel
Muestreo por Hipercubo Latino Condicionado
Muestreo Aleatorio
Regresión Lineal Múltiple
Bosques Aleatorios
title_short Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo
title_full Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo
title_fullStr Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo
title_full_unstemmed Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo
title_sort Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo
dc.creator.none.fl_str_mv Paccioretti, Pablo Ariel
Giannini Kurina, Franca
Balzarini, Monica Graciela
author Paccioretti, Pablo Ariel
author_facet Paccioretti, Pablo Ariel
Giannini Kurina, Franca
Balzarini, Monica Graciela
author_role author
author2 Giannini Kurina, Franca
Balzarini, Monica Graciela
author2_role author
author
dc.subject.none.fl_str_mv Muestreo por Hipercubo Latino Condicionado
Muestreo Aleatorio
Regresión Lineal Múltiple
Bosques Aleatorios
topic Muestreo por Hipercubo Latino Condicionado
Muestreo Aleatorio
Regresión Lineal Múltiple
Bosques Aleatorios
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.1
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv El objetivo de este estudio fue evaluar el desempeño del método de muestreo denominado hipercubo latino condicionado (cLHS) para identificar sitios convenientes para la obtención de datos de propiedades edáficas, que son usados en la construcción de modelos para el mapeo digital de una variable espacialmente distribuida, como es el carbono orgánico del suelo (COS). Dados N sitios con información sobre p variables explicativas (X), cLHS selecciona una muestra de n sitios de tal manera que la distribución multivariada de X sea completamente caracterizada. En este trabajo, se utilizaron datos de un estudio regional de suelos de la Provincia de Córdoba para comparar el desempeño del método de muestreo cLHS con el muestreo aleatorio simple (MAS). Para evaluar el método de muestreo, se muestreó repetidamente la población de sitios con datos y se ajustó, en cada muestra, la relación entre COS y las propiedades edafo-climáticas del sitio, usando tanto modelos de regresión lineal como el algoritmo random forest de aprendizaje automático. Se evaluaron los errores de predicción de cada método de muestreo con cada método estadístico usado para la predicción de COS en sitios donde esta variable no fue medida. El método de muestreo impactó la confiabilidad global de las predicciones derivadas de ambos modelos de regresión y los errores de predicción sitio-específicos. El método cLHS fue más eficiente que MAS para identificar sitios con suficiente variabilidad para estimar el modelo de la relación entre COS y propiedades edafo-climáticas, usado para predecir en otros sitios del territorio el valor del COS. El modelo estimado puede ser usado para mapeo digital de COS.
The objective of this study was to evaluate the performance of the sampling method called conditioned Latin Hypercube (cLHS) to identify convenient sites for obtaining data on edaphic properties that are used in the construction of models for digital mapping of a spatially distributed variable as it is soil organic carbon (SOC). Given N sites with information on p explanatory variables (X), cLHS selects a sample of n sites in such a way that the multivariate distribution of X is fully characterized. In this work, data from a regional soil study of the Province of Córdoba were used to compare the performance of the cLHS sampling method with simple random sampling (RS). To evaluate the sampling method, the population of sites with data was repeatedly sampled and, in each sample, the relationship between SOC and the edapho-climatic properties of the site was adjusted, using both linear regression models and random forest as machine learning algorithm. The prediction errors of each sampling method were evaluated with each statistical method used for the prediction of SOC in sites where this variable was not measured. The sampling method impacted the overall reliability of the predictions derived from both regression models and site-specific prediction errors. The cLHS method was more efficient than RS to identify sites with sufficient variability to estimate the model of the relationship between SOC and edapho-climatic properties, used to predict the SOC value in other sites of the territory. The estimated model can be used for digital mapping of SOC.
Fil: Paccioretti, Pablo Ariel. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina
Fil: Giannini Kurina, Franca. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina
Fil: Balzarini, Monica Graciela. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina
description El objetivo de este estudio fue evaluar el desempeño del método de muestreo denominado hipercubo latino condicionado (cLHS) para identificar sitios convenientes para la obtención de datos de propiedades edáficas, que son usados en la construcción de modelos para el mapeo digital de una variable espacialmente distribuida, como es el carbono orgánico del suelo (COS). Dados N sitios con información sobre p variables explicativas (X), cLHS selecciona una muestra de n sitios de tal manera que la distribución multivariada de X sea completamente caracterizada. En este trabajo, se utilizaron datos de un estudio regional de suelos de la Provincia de Córdoba para comparar el desempeño del método de muestreo cLHS con el muestreo aleatorio simple (MAS). Para evaluar el método de muestreo, se muestreó repetidamente la población de sitios con datos y se ajustó, en cada muestra, la relación entre COS y las propiedades edafo-climáticas del sitio, usando tanto modelos de regresión lineal como el algoritmo random forest de aprendizaje automático. Se evaluaron los errores de predicción de cada método de muestreo con cada método estadístico usado para la predicción de COS en sitios donde esta variable no fue medida. El método de muestreo impactó la confiabilidad global de las predicciones derivadas de ambos modelos de regresión y los errores de predicción sitio-específicos. El método cLHS fue más eficiente que MAS para identificar sitios con suficiente variabilidad para estimar el modelo de la relación entre COS y propiedades edafo-climáticas, usado para predecir en otros sitios del territorio el valor del COS. El modelo estimado puede ser usado para mapeo digital de COS.
publishDate 2020
dc.date.none.fl_str_mv 2020-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/142287
Paccioretti, Pablo Ariel; Giannini Kurina, Franca; Balzarini, Monica Graciela; Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo; Asociación Argentina de la Ciencia del Suelo; Ciencia del Suelo; 38; 2; 12-2020; 310-320
0326-3169
1850-2067
CONICET Digital
CONICET
url http://hdl.handle.net/11336/142287
identifier_str_mv Paccioretti, Pablo Ariel; Giannini Kurina, Franca; Balzarini, Monica Graciela; Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo; Asociación Argentina de la Ciencia del Suelo; Ciencia del Suelo; 38; 2; 12-2020; 310-320
0326-3169
1850-2067
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.suelos.org.ar/publicaciones/Volumen38n2/Volumen38n2/10-576_Muestreo_de_sitios_WBIS.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Asociación Argentina de la Ciencia del Suelo
publisher.none.fl_str_mv Asociación Argentina de la Ciencia del Suelo
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606442765975552
score 13.000565