Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo
- Autores
- Paccioretti, Pablo Ariel; Giannini Kurina, Franca; Balzarini, Monica Graciela
- Año de publicación
- 2020
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- El objetivo de este estudio fue evaluar el desempeño del método de muestreo denominado hipercubo latino condicionado (cLHS) para identificar sitios convenientes para la obtención de datos de propiedades edáficas, que son usados en la construcción de modelos para el mapeo digital de una variable espacialmente distribuida, como es el carbono orgánico del suelo (COS). Dados N sitios con información sobre p variables explicativas (X), cLHS selecciona una muestra de n sitios de tal manera que la distribución multivariada de X sea completamente caracterizada. En este trabajo, se utilizaron datos de un estudio regional de suelos de la Provincia de Córdoba para comparar el desempeño del método de muestreo cLHS con el muestreo aleatorio simple (MAS). Para evaluar el método de muestreo, se muestreó repetidamente la población de sitios con datos y se ajustó, en cada muestra, la relación entre COS y las propiedades edafo-climáticas del sitio, usando tanto modelos de regresión lineal como el algoritmo random forest de aprendizaje automático. Se evaluaron los errores de predicción de cada método de muestreo con cada método estadístico usado para la predicción de COS en sitios donde esta variable no fue medida. El método de muestreo impactó la confiabilidad global de las predicciones derivadas de ambos modelos de regresión y los errores de predicción sitio-específicos. El método cLHS fue más eficiente que MAS para identificar sitios con suficiente variabilidad para estimar el modelo de la relación entre COS y propiedades edafo-climáticas, usado para predecir en otros sitios del territorio el valor del COS. El modelo estimado puede ser usado para mapeo digital de COS.
The objective of this study was to evaluate the performance of the sampling method called conditioned Latin Hypercube (cLHS) to identify convenient sites for obtaining data on edaphic properties that are used in the construction of models for digital mapping of a spatially distributed variable as it is soil organic carbon (SOC). Given N sites with information on p explanatory variables (X), cLHS selects a sample of n sites in such a way that the multivariate distribution of X is fully characterized. In this work, data from a regional soil study of the Province of Córdoba were used to compare the performance of the cLHS sampling method with simple random sampling (RS). To evaluate the sampling method, the population of sites with data was repeatedly sampled and, in each sample, the relationship between SOC and the edapho-climatic properties of the site was adjusted, using both linear regression models and random forest as machine learning algorithm. The prediction errors of each sampling method were evaluated with each statistical method used for the prediction of SOC in sites where this variable was not measured. The sampling method impacted the overall reliability of the predictions derived from both regression models and site-specific prediction errors. The cLHS method was more efficient than RS to identify sites with sufficient variability to estimate the model of the relationship between SOC and edapho-climatic properties, used to predict the SOC value in other sites of the territory. The estimated model can be used for digital mapping of SOC.
Fil: Paccioretti, Pablo Ariel. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina
Fil: Giannini Kurina, Franca. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina
Fil: Balzarini, Monica Graciela. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina - Materia
-
Muestreo por Hipercubo Latino Condicionado
Muestreo Aleatorio
Regresión Lineal Múltiple
Bosques Aleatorios - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/142287
Ver los metadatos del registro completo
id |
CONICETDig_73092c26adde9943864046217a755f0d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/142287 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Muestreo de sitios a escala regional para mapeo digital basado en propiedades de sueloSite sampling at regional scale for digital mapping based on soil propertiesPaccioretti, Pablo ArielGiannini Kurina, FrancaBalzarini, Monica GracielaMuestreo por Hipercubo Latino CondicionadoMuestreo AleatorioRegresión Lineal MúltipleBosques Aleatorioshttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4El objetivo de este estudio fue evaluar el desempeño del método de muestreo denominado hipercubo latino condicionado (cLHS) para identificar sitios convenientes para la obtención de datos de propiedades edáficas, que son usados en la construcción de modelos para el mapeo digital de una variable espacialmente distribuida, como es el carbono orgánico del suelo (COS). Dados N sitios con información sobre p variables explicativas (X), cLHS selecciona una muestra de n sitios de tal manera que la distribución multivariada de X sea completamente caracterizada. En este trabajo, se utilizaron datos de un estudio regional de suelos de la Provincia de Córdoba para comparar el desempeño del método de muestreo cLHS con el muestreo aleatorio simple (MAS). Para evaluar el método de muestreo, se muestreó repetidamente la población de sitios con datos y se ajustó, en cada muestra, la relación entre COS y las propiedades edafo-climáticas del sitio, usando tanto modelos de regresión lineal como el algoritmo random forest de aprendizaje automático. Se evaluaron los errores de predicción de cada método de muestreo con cada método estadístico usado para la predicción de COS en sitios donde esta variable no fue medida. El método de muestreo impactó la confiabilidad global de las predicciones derivadas de ambos modelos de regresión y los errores de predicción sitio-específicos. El método cLHS fue más eficiente que MAS para identificar sitios con suficiente variabilidad para estimar el modelo de la relación entre COS y propiedades edafo-climáticas, usado para predecir en otros sitios del territorio el valor del COS. El modelo estimado puede ser usado para mapeo digital de COS.The objective of this study was to evaluate the performance of the sampling method called conditioned Latin Hypercube (cLHS) to identify convenient sites for obtaining data on edaphic properties that are used in the construction of models for digital mapping of a spatially distributed variable as it is soil organic carbon (SOC). Given N sites with information on p explanatory variables (X), cLHS selects a sample of n sites in such a way that the multivariate distribution of X is fully characterized. In this work, data from a regional soil study of the Province of Córdoba were used to compare the performance of the cLHS sampling method with simple random sampling (RS). To evaluate the sampling method, the population of sites with data was repeatedly sampled and, in each sample, the relationship between SOC and the edapho-climatic properties of the site was adjusted, using both linear regression models and random forest as machine learning algorithm. The prediction errors of each sampling method were evaluated with each statistical method used for the prediction of SOC in sites where this variable was not measured. The sampling method impacted the overall reliability of the predictions derived from both regression models and site-specific prediction errors. The cLHS method was more efficient than RS to identify sites with sufficient variability to estimate the model of the relationship between SOC and edapho-climatic properties, used to predict the SOC value in other sites of the territory. The estimated model can be used for digital mapping of SOC.Fil: Paccioretti, Pablo Ariel. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; ArgentinaFil: Giannini Kurina, Franca. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; ArgentinaFil: Balzarini, Monica Graciela. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; ArgentinaAsociación Argentina de la Ciencia del Suelo2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/142287Paccioretti, Pablo Ariel; Giannini Kurina, Franca; Balzarini, Monica Graciela; Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo; Asociación Argentina de la Ciencia del Suelo; Ciencia del Suelo; 38; 2; 12-2020; 310-3200326-31691850-2067CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://www.suelos.org.ar/publicaciones/Volumen38n2/Volumen38n2/10-576_Muestreo_de_sitios_WBIS.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:11:12Zoai:ri.conicet.gov.ar:11336/142287instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:11:12.655CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo Site sampling at regional scale for digital mapping based on soil properties |
title |
Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo |
spellingShingle |
Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo Paccioretti, Pablo Ariel Muestreo por Hipercubo Latino Condicionado Muestreo Aleatorio Regresión Lineal Múltiple Bosques Aleatorios |
title_short |
Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo |
title_full |
Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo |
title_fullStr |
Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo |
title_full_unstemmed |
Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo |
title_sort |
Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo |
dc.creator.none.fl_str_mv |
Paccioretti, Pablo Ariel Giannini Kurina, Franca Balzarini, Monica Graciela |
author |
Paccioretti, Pablo Ariel |
author_facet |
Paccioretti, Pablo Ariel Giannini Kurina, Franca Balzarini, Monica Graciela |
author_role |
author |
author2 |
Giannini Kurina, Franca Balzarini, Monica Graciela |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Muestreo por Hipercubo Latino Condicionado Muestreo Aleatorio Regresión Lineal Múltiple Bosques Aleatorios |
topic |
Muestreo por Hipercubo Latino Condicionado Muestreo Aleatorio Regresión Lineal Múltiple Bosques Aleatorios |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
El objetivo de este estudio fue evaluar el desempeño del método de muestreo denominado hipercubo latino condicionado (cLHS) para identificar sitios convenientes para la obtención de datos de propiedades edáficas, que son usados en la construcción de modelos para el mapeo digital de una variable espacialmente distribuida, como es el carbono orgánico del suelo (COS). Dados N sitios con información sobre p variables explicativas (X), cLHS selecciona una muestra de n sitios de tal manera que la distribución multivariada de X sea completamente caracterizada. En este trabajo, se utilizaron datos de un estudio regional de suelos de la Provincia de Córdoba para comparar el desempeño del método de muestreo cLHS con el muestreo aleatorio simple (MAS). Para evaluar el método de muestreo, se muestreó repetidamente la población de sitios con datos y se ajustó, en cada muestra, la relación entre COS y las propiedades edafo-climáticas del sitio, usando tanto modelos de regresión lineal como el algoritmo random forest de aprendizaje automático. Se evaluaron los errores de predicción de cada método de muestreo con cada método estadístico usado para la predicción de COS en sitios donde esta variable no fue medida. El método de muestreo impactó la confiabilidad global de las predicciones derivadas de ambos modelos de regresión y los errores de predicción sitio-específicos. El método cLHS fue más eficiente que MAS para identificar sitios con suficiente variabilidad para estimar el modelo de la relación entre COS y propiedades edafo-climáticas, usado para predecir en otros sitios del territorio el valor del COS. El modelo estimado puede ser usado para mapeo digital de COS. The objective of this study was to evaluate the performance of the sampling method called conditioned Latin Hypercube (cLHS) to identify convenient sites for obtaining data on edaphic properties that are used in the construction of models for digital mapping of a spatially distributed variable as it is soil organic carbon (SOC). Given N sites with information on p explanatory variables (X), cLHS selects a sample of n sites in such a way that the multivariate distribution of X is fully characterized. In this work, data from a regional soil study of the Province of Córdoba were used to compare the performance of the cLHS sampling method with simple random sampling (RS). To evaluate the sampling method, the population of sites with data was repeatedly sampled and, in each sample, the relationship between SOC and the edapho-climatic properties of the site was adjusted, using both linear regression models and random forest as machine learning algorithm. The prediction errors of each sampling method were evaluated with each statistical method used for the prediction of SOC in sites where this variable was not measured. The sampling method impacted the overall reliability of the predictions derived from both regression models and site-specific prediction errors. The cLHS method was more efficient than RS to identify sites with sufficient variability to estimate the model of the relationship between SOC and edapho-climatic properties, used to predict the SOC value in other sites of the territory. The estimated model can be used for digital mapping of SOC. Fil: Paccioretti, Pablo Ariel. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina Fil: Giannini Kurina, Franca. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina Fil: Balzarini, Monica Graciela. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina |
description |
El objetivo de este estudio fue evaluar el desempeño del método de muestreo denominado hipercubo latino condicionado (cLHS) para identificar sitios convenientes para la obtención de datos de propiedades edáficas, que son usados en la construcción de modelos para el mapeo digital de una variable espacialmente distribuida, como es el carbono orgánico del suelo (COS). Dados N sitios con información sobre p variables explicativas (X), cLHS selecciona una muestra de n sitios de tal manera que la distribución multivariada de X sea completamente caracterizada. En este trabajo, se utilizaron datos de un estudio regional de suelos de la Provincia de Córdoba para comparar el desempeño del método de muestreo cLHS con el muestreo aleatorio simple (MAS). Para evaluar el método de muestreo, se muestreó repetidamente la población de sitios con datos y se ajustó, en cada muestra, la relación entre COS y las propiedades edafo-climáticas del sitio, usando tanto modelos de regresión lineal como el algoritmo random forest de aprendizaje automático. Se evaluaron los errores de predicción de cada método de muestreo con cada método estadístico usado para la predicción de COS en sitios donde esta variable no fue medida. El método de muestreo impactó la confiabilidad global de las predicciones derivadas de ambos modelos de regresión y los errores de predicción sitio-específicos. El método cLHS fue más eficiente que MAS para identificar sitios con suficiente variabilidad para estimar el modelo de la relación entre COS y propiedades edafo-climáticas, usado para predecir en otros sitios del territorio el valor del COS. El modelo estimado puede ser usado para mapeo digital de COS. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/142287 Paccioretti, Pablo Ariel; Giannini Kurina, Franca; Balzarini, Monica Graciela; Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo; Asociación Argentina de la Ciencia del Suelo; Ciencia del Suelo; 38; 2; 12-2020; 310-320 0326-3169 1850-2067 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/142287 |
identifier_str_mv |
Paccioretti, Pablo Ariel; Giannini Kurina, Franca; Balzarini, Monica Graciela; Muestreo de sitios a escala regional para mapeo digital basado en propiedades de suelo; Asociación Argentina de la Ciencia del Suelo; Ciencia del Suelo; 38; 2; 12-2020; 310-320 0326-3169 1850-2067 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.suelos.org.ar/publicaciones/Volumen38n2/Volumen38n2/10-576_Muestreo_de_sitios_WBIS.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Asociación Argentina de la Ciencia del Suelo |
publisher.none.fl_str_mv |
Asociación Argentina de la Ciencia del Suelo |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606442765975552 |
score |
13.000565 |