Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics
- Autores
- Martinez, María Victoria; Bruno, Mariano Martín; Miras, Maria Cristina; Barbero, César Alfredo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Electroactive polymers are made by loading redox complexes inside different polymeric crosslinked hydrogels. A redox cation (tris(phenanthroline)iron(II) (TPFeII) is sorbed in anionic, neutral and cationic hydrogels while redox anions (ferricyanide) is taken up inside an anionic hydrogel. Moreover, a redox anion (nitrite) and a cation (TPFeII) are simultaneously absorbed in an anionic hydrogel. Homopolymeric hydrogels of 2-acrylamidopropanesulfonic acid (PAMPS), acrylic acid (PAA) or (3-acrylamidopropyl)trimethylammonium chloride) (PAPMTAC), crosslinked with bisacrylamide, are synthesized by radical polymerization. The same method is used to produce a 1:1 copolymeric hydrogel of acrylic acid and 2-acrylamidopropanesulfonic acid (PAA-co-AMPS). The physicochemical properties of the hydrogels are evaluated by measuring the swelling kinetics, in the same conditions of the electrochemical measurements. The cyclic voltammetric response of all electroactive polymers show quasireversible electron transfer (Eqrev mechanism) while the hydrogel loaded with TPFeII and nitrite show a catalyzed oxidation (EqrevC mechanism). The electrochemical parameters (diffusion coefficient and charge transfer constant) of TPFeII loaded inside PAMPS, PAA and PAA-co-AMPS are measured using chronoamperometry and digital simulation of the cyclic voltammetry. The Stokes-Einstein equation is used to calculate the effective viscosity of the hydrogel matrixes using the diffusion coefficients of a redox complex (TPFeII) determined inside the hydrogels and the same parameters determined in aqueous solution. The calculated viscosity correlates, with a negative slope, with the swelling rate constant of the hydrogel matrix. The heterogeneous charge transfer of the redox complex inside ionomers (PAMPS and PAA-co-PAMPS) is nearly as fast as in solution, while the charge transfer inside the neutral PAA is ca. 100 times smaller. The measured charge transfer constants correlate with the calculated viscosity, revealing the effect of solvent dynamics on the charge transfer, according to Marcus theory for strongly adiabatic electron transfer. In that way, it is shown that the electrochemical measurements are able to monitor the local solvation properties of the hydrogel matrix. These results suggest novel ways to produce electroactive polymers by loading redox active substances inside hydrogels, even when the hydrogel matrix is neutral or bear the same charge than the redox probe. The redox complexes are present as dilute solutions and the hydrogel dimensions fulfill the semi-infinite diffusion boundary conditions. Therefore, the data analysis can be performed using the theoretical framework for electrochemical measurements in liquid solvents.
Fil: Martinez, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
Fil: Bruno, Mariano Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
Fil: Miras, Maria Cristina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
Fil: Barbero, César Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina - Materia
-
Electroactive Polymers
Heterogeneous Charge Transfer
Hydrogels
Hydrophobic Interactions
Redox Complexes
Semi-Infinite Diffusion - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/72291
Ver los metadatos del registro completo
id |
CONICETDig_72e455e724d3b8fd5f8e34de911825fe |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/72291 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamicsMartinez, María VictoriaBruno, Mariano MartínMiras, Maria CristinaBarbero, César AlfredoElectroactive PolymersHeterogeneous Charge TransferHydrogelsHydrophobic InteractionsRedox ComplexesSemi-Infinite Diffusionhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Electroactive polymers are made by loading redox complexes inside different polymeric crosslinked hydrogels. A redox cation (tris(phenanthroline)iron(II) (TPFeII) is sorbed in anionic, neutral and cationic hydrogels while redox anions (ferricyanide) is taken up inside an anionic hydrogel. Moreover, a redox anion (nitrite) and a cation (TPFeII) are simultaneously absorbed in an anionic hydrogel. Homopolymeric hydrogels of 2-acrylamidopropanesulfonic acid (PAMPS), acrylic acid (PAA) or (3-acrylamidopropyl)trimethylammonium chloride) (PAPMTAC), crosslinked with bisacrylamide, are synthesized by radical polymerization. The same method is used to produce a 1:1 copolymeric hydrogel of acrylic acid and 2-acrylamidopropanesulfonic acid (PAA-co-AMPS). The physicochemical properties of the hydrogels are evaluated by measuring the swelling kinetics, in the same conditions of the electrochemical measurements. The cyclic voltammetric response of all electroactive polymers show quasireversible electron transfer (Eqrev mechanism) while the hydrogel loaded with TPFeII and nitrite show a catalyzed oxidation (EqrevC mechanism). The electrochemical parameters (diffusion coefficient and charge transfer constant) of TPFeII loaded inside PAMPS, PAA and PAA-co-AMPS are measured using chronoamperometry and digital simulation of the cyclic voltammetry. The Stokes-Einstein equation is used to calculate the effective viscosity of the hydrogel matrixes using the diffusion coefficients of a redox complex (TPFeII) determined inside the hydrogels and the same parameters determined in aqueous solution. The calculated viscosity correlates, with a negative slope, with the swelling rate constant of the hydrogel matrix. The heterogeneous charge transfer of the redox complex inside ionomers (PAMPS and PAA-co-PAMPS) is nearly as fast as in solution, while the charge transfer inside the neutral PAA is ca. 100 times smaller. The measured charge transfer constants correlate with the calculated viscosity, revealing the effect of solvent dynamics on the charge transfer, according to Marcus theory for strongly adiabatic electron transfer. In that way, it is shown that the electrochemical measurements are able to monitor the local solvation properties of the hydrogel matrix. These results suggest novel ways to produce electroactive polymers by loading redox active substances inside hydrogels, even when the hydrogel matrix is neutral or bear the same charge than the redox probe. The redox complexes are present as dilute solutions and the hydrogel dimensions fulfill the semi-infinite diffusion boundary conditions. Therefore, the data analysis can be performed using the theoretical framework for electrochemical measurements in liquid solvents.Fil: Martinez, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Bruno, Mariano Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Miras, Maria Cristina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Barbero, César Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaPergamon-Elsevier Science Ltd2016-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72291Martinez, María Victoria; Bruno, Mariano Martín; Miras, Maria Cristina; Barbero, César Alfredo; Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 219; 11-2016; 363-3760013-4686CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0013468616320941info:eu-repo/semantics/altIdentifier/doi/10.1016/j.electacta.2016.10.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:39:46Zoai:ri.conicet.gov.ar:11336/72291instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:39:47.073CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics |
title |
Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics |
spellingShingle |
Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics Martinez, María Victoria Electroactive Polymers Heterogeneous Charge Transfer Hydrogels Hydrophobic Interactions Redox Complexes Semi-Infinite Diffusion |
title_short |
Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics |
title_full |
Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics |
title_fullStr |
Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics |
title_full_unstemmed |
Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics |
title_sort |
Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics |
dc.creator.none.fl_str_mv |
Martinez, María Victoria Bruno, Mariano Martín Miras, Maria Cristina Barbero, César Alfredo |
author |
Martinez, María Victoria |
author_facet |
Martinez, María Victoria Bruno, Mariano Martín Miras, Maria Cristina Barbero, César Alfredo |
author_role |
author |
author2 |
Bruno, Mariano Martín Miras, Maria Cristina Barbero, César Alfredo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Electroactive Polymers Heterogeneous Charge Transfer Hydrogels Hydrophobic Interactions Redox Complexes Semi-Infinite Diffusion |
topic |
Electroactive Polymers Heterogeneous Charge Transfer Hydrogels Hydrophobic Interactions Redox Complexes Semi-Infinite Diffusion |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Electroactive polymers are made by loading redox complexes inside different polymeric crosslinked hydrogels. A redox cation (tris(phenanthroline)iron(II) (TPFeII) is sorbed in anionic, neutral and cationic hydrogels while redox anions (ferricyanide) is taken up inside an anionic hydrogel. Moreover, a redox anion (nitrite) and a cation (TPFeII) are simultaneously absorbed in an anionic hydrogel. Homopolymeric hydrogels of 2-acrylamidopropanesulfonic acid (PAMPS), acrylic acid (PAA) or (3-acrylamidopropyl)trimethylammonium chloride) (PAPMTAC), crosslinked with bisacrylamide, are synthesized by radical polymerization. The same method is used to produce a 1:1 copolymeric hydrogel of acrylic acid and 2-acrylamidopropanesulfonic acid (PAA-co-AMPS). The physicochemical properties of the hydrogels are evaluated by measuring the swelling kinetics, in the same conditions of the electrochemical measurements. The cyclic voltammetric response of all electroactive polymers show quasireversible electron transfer (Eqrev mechanism) while the hydrogel loaded with TPFeII and nitrite show a catalyzed oxidation (EqrevC mechanism). The electrochemical parameters (diffusion coefficient and charge transfer constant) of TPFeII loaded inside PAMPS, PAA and PAA-co-AMPS are measured using chronoamperometry and digital simulation of the cyclic voltammetry. The Stokes-Einstein equation is used to calculate the effective viscosity of the hydrogel matrixes using the diffusion coefficients of a redox complex (TPFeII) determined inside the hydrogels and the same parameters determined in aqueous solution. The calculated viscosity correlates, with a negative slope, with the swelling rate constant of the hydrogel matrix. The heterogeneous charge transfer of the redox complex inside ionomers (PAMPS and PAA-co-PAMPS) is nearly as fast as in solution, while the charge transfer inside the neutral PAA is ca. 100 times smaller. The measured charge transfer constants correlate with the calculated viscosity, revealing the effect of solvent dynamics on the charge transfer, according to Marcus theory for strongly adiabatic electron transfer. In that way, it is shown that the electrochemical measurements are able to monitor the local solvation properties of the hydrogel matrix. These results suggest novel ways to produce electroactive polymers by loading redox active substances inside hydrogels, even when the hydrogel matrix is neutral or bear the same charge than the redox probe. The redox complexes are present as dilute solutions and the hydrogel dimensions fulfill the semi-infinite diffusion boundary conditions. Therefore, the data analysis can be performed using the theoretical framework for electrochemical measurements in liquid solvents. Fil: Martinez, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina Fil: Bruno, Mariano Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina Fil: Miras, Maria Cristina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina Fil: Barbero, César Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina |
description |
Electroactive polymers are made by loading redox complexes inside different polymeric crosslinked hydrogels. A redox cation (tris(phenanthroline)iron(II) (TPFeII) is sorbed in anionic, neutral and cationic hydrogels while redox anions (ferricyanide) is taken up inside an anionic hydrogel. Moreover, a redox anion (nitrite) and a cation (TPFeII) are simultaneously absorbed in an anionic hydrogel. Homopolymeric hydrogels of 2-acrylamidopropanesulfonic acid (PAMPS), acrylic acid (PAA) or (3-acrylamidopropyl)trimethylammonium chloride) (PAPMTAC), crosslinked with bisacrylamide, are synthesized by radical polymerization. The same method is used to produce a 1:1 copolymeric hydrogel of acrylic acid and 2-acrylamidopropanesulfonic acid (PAA-co-AMPS). The physicochemical properties of the hydrogels are evaluated by measuring the swelling kinetics, in the same conditions of the electrochemical measurements. The cyclic voltammetric response of all electroactive polymers show quasireversible electron transfer (Eqrev mechanism) while the hydrogel loaded with TPFeII and nitrite show a catalyzed oxidation (EqrevC mechanism). The electrochemical parameters (diffusion coefficient and charge transfer constant) of TPFeII loaded inside PAMPS, PAA and PAA-co-AMPS are measured using chronoamperometry and digital simulation of the cyclic voltammetry. The Stokes-Einstein equation is used to calculate the effective viscosity of the hydrogel matrixes using the diffusion coefficients of a redox complex (TPFeII) determined inside the hydrogels and the same parameters determined in aqueous solution. The calculated viscosity correlates, with a negative slope, with the swelling rate constant of the hydrogel matrix. The heterogeneous charge transfer of the redox complex inside ionomers (PAMPS and PAA-co-PAMPS) is nearly as fast as in solution, while the charge transfer inside the neutral PAA is ca. 100 times smaller. The measured charge transfer constants correlate with the calculated viscosity, revealing the effect of solvent dynamics on the charge transfer, according to Marcus theory for strongly adiabatic electron transfer. In that way, it is shown that the electrochemical measurements are able to monitor the local solvation properties of the hydrogel matrix. These results suggest novel ways to produce electroactive polymers by loading redox active substances inside hydrogels, even when the hydrogel matrix is neutral or bear the same charge than the redox probe. The redox complexes are present as dilute solutions and the hydrogel dimensions fulfill the semi-infinite diffusion boundary conditions. Therefore, the data analysis can be performed using the theoretical framework for electrochemical measurements in liquid solvents. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/72291 Martinez, María Victoria; Bruno, Mariano Martín; Miras, Maria Cristina; Barbero, César Alfredo; Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 219; 11-2016; 363-376 0013-4686 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/72291 |
identifier_str_mv |
Martinez, María Victoria; Bruno, Mariano Martín; Miras, Maria Cristina; Barbero, César Alfredo; Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 219; 11-2016; 363-376 0013-4686 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0013468616320941 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.electacta.2016.10.007 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082885266702336 |
score |
13.22299 |