Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics

Autores
Martinez, María Victoria; Bruno, Mariano Martín; Miras, Maria Cristina; Barbero, César Alfredo
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Electroactive polymers are made by loading redox complexes inside different polymeric crosslinked hydrogels. A redox cation (tris(phenanthroline)iron(II) (TPFeII) is sorbed in anionic, neutral and cationic hydrogels while redox anions (ferricyanide) is taken up inside an anionic hydrogel. Moreover, a redox anion (nitrite) and a cation (TPFeII) are simultaneously absorbed in an anionic hydrogel. Homopolymeric hydrogels of 2-acrylamidopropanesulfonic acid (PAMPS), acrylic acid (PAA) or (3-acrylamidopropyl)trimethylammonium chloride) (PAPMTAC), crosslinked with bisacrylamide, are synthesized by radical polymerization. The same method is used to produce a 1:1 copolymeric hydrogel of acrylic acid and 2-acrylamidopropanesulfonic acid (PAA-co-AMPS). The physicochemical properties of the hydrogels are evaluated by measuring the swelling kinetics, in the same conditions of the electrochemical measurements. The cyclic voltammetric response of all electroactive polymers show quasireversible electron transfer (Eqrev mechanism) while the hydrogel loaded with TPFeII and nitrite show a catalyzed oxidation (EqrevC mechanism). The electrochemical parameters (diffusion coefficient and charge transfer constant) of TPFeII loaded inside PAMPS, PAA and PAA-co-AMPS are measured using chronoamperometry and digital simulation of the cyclic voltammetry. The Stokes-Einstein equation is used to calculate the effective viscosity of the hydrogel matrixes using the diffusion coefficients of a redox complex (TPFeII) determined inside the hydrogels and the same parameters determined in aqueous solution. The calculated viscosity correlates, with a negative slope, with the swelling rate constant of the hydrogel matrix. The heterogeneous charge transfer of the redox complex inside ionomers (PAMPS and PAA-co-PAMPS) is nearly as fast as in solution, while the charge transfer inside the neutral PAA is ca. 100 times smaller. The measured charge transfer constants correlate with the calculated viscosity, revealing the effect of solvent dynamics on the charge transfer, according to Marcus theory for strongly adiabatic electron transfer. In that way, it is shown that the electrochemical measurements are able to monitor the local solvation properties of the hydrogel matrix. These results suggest novel ways to produce electroactive polymers by loading redox active substances inside hydrogels, even when the hydrogel matrix is neutral or bear the same charge than the redox probe. The redox complexes are present as dilute solutions and the hydrogel dimensions fulfill the semi-infinite diffusion boundary conditions. Therefore, the data analysis can be performed using the theoretical framework for electrochemical measurements in liquid solvents.
Fil: Martinez, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
Fil: Bruno, Mariano Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
Fil: Miras, Maria Cristina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
Fil: Barbero, César Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
Materia
Electroactive Polymers
Heterogeneous Charge Transfer
Hydrogels
Hydrophobic Interactions
Redox Complexes
Semi-Infinite Diffusion
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/72291

id CONICETDig_72e455e724d3b8fd5f8e34de911825fe
oai_identifier_str oai:ri.conicet.gov.ar:11336/72291
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamicsMartinez, María VictoriaBruno, Mariano MartínMiras, Maria CristinaBarbero, César AlfredoElectroactive PolymersHeterogeneous Charge TransferHydrogelsHydrophobic InteractionsRedox ComplexesSemi-Infinite Diffusionhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Electroactive polymers are made by loading redox complexes inside different polymeric crosslinked hydrogels. A redox cation (tris(phenanthroline)iron(II) (TPFeII) is sorbed in anionic, neutral and cationic hydrogels while redox anions (ferricyanide) is taken up inside an anionic hydrogel. Moreover, a redox anion (nitrite) and a cation (TPFeII) are simultaneously absorbed in an anionic hydrogel. Homopolymeric hydrogels of 2-acrylamidopropanesulfonic acid (PAMPS), acrylic acid (PAA) or (3-acrylamidopropyl)trimethylammonium chloride) (PAPMTAC), crosslinked with bisacrylamide, are synthesized by radical polymerization. The same method is used to produce a 1:1 copolymeric hydrogel of acrylic acid and 2-acrylamidopropanesulfonic acid (PAA-co-AMPS). The physicochemical properties of the hydrogels are evaluated by measuring the swelling kinetics, in the same conditions of the electrochemical measurements. The cyclic voltammetric response of all electroactive polymers show quasireversible electron transfer (Eqrev mechanism) while the hydrogel loaded with TPFeII and nitrite show a catalyzed oxidation (EqrevC mechanism). The electrochemical parameters (diffusion coefficient and charge transfer constant) of TPFeII loaded inside PAMPS, PAA and PAA-co-AMPS are measured using chronoamperometry and digital simulation of the cyclic voltammetry. The Stokes-Einstein equation is used to calculate the effective viscosity of the hydrogel matrixes using the diffusion coefficients of a redox complex (TPFeII) determined inside the hydrogels and the same parameters determined in aqueous solution. The calculated viscosity correlates, with a negative slope, with the swelling rate constant of the hydrogel matrix. The heterogeneous charge transfer of the redox complex inside ionomers (PAMPS and PAA-co-PAMPS) is nearly as fast as in solution, while the charge transfer inside the neutral PAA is ca. 100 times smaller. The measured charge transfer constants correlate with the calculated viscosity, revealing the effect of solvent dynamics on the charge transfer, according to Marcus theory for strongly adiabatic electron transfer. In that way, it is shown that the electrochemical measurements are able to monitor the local solvation properties of the hydrogel matrix. These results suggest novel ways to produce electroactive polymers by loading redox active substances inside hydrogels, even when the hydrogel matrix is neutral or bear the same charge than the redox probe. The redox complexes are present as dilute solutions and the hydrogel dimensions fulfill the semi-infinite diffusion boundary conditions. Therefore, the data analysis can be performed using the theoretical framework for electrochemical measurements in liquid solvents.Fil: Martinez, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Bruno, Mariano Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Miras, Maria Cristina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Barbero, César Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaPergamon-Elsevier Science Ltd2016-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72291Martinez, María Victoria; Bruno, Mariano Martín; Miras, Maria Cristina; Barbero, César Alfredo; Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 219; 11-2016; 363-3760013-4686CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0013468616320941info:eu-repo/semantics/altIdentifier/doi/10.1016/j.electacta.2016.10.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:39:46Zoai:ri.conicet.gov.ar:11336/72291instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:39:47.073CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics
title Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics
spellingShingle Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics
Martinez, María Victoria
Electroactive Polymers
Heterogeneous Charge Transfer
Hydrogels
Hydrophobic Interactions
Redox Complexes
Semi-Infinite Diffusion
title_short Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics
title_full Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics
title_fullStr Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics
title_full_unstemmed Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics
title_sort Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics
dc.creator.none.fl_str_mv Martinez, María Victoria
Bruno, Mariano Martín
Miras, Maria Cristina
Barbero, César Alfredo
author Martinez, María Victoria
author_facet Martinez, María Victoria
Bruno, Mariano Martín
Miras, Maria Cristina
Barbero, César Alfredo
author_role author
author2 Bruno, Mariano Martín
Miras, Maria Cristina
Barbero, César Alfredo
author2_role author
author
author
dc.subject.none.fl_str_mv Electroactive Polymers
Heterogeneous Charge Transfer
Hydrogels
Hydrophobic Interactions
Redox Complexes
Semi-Infinite Diffusion
topic Electroactive Polymers
Heterogeneous Charge Transfer
Hydrogels
Hydrophobic Interactions
Redox Complexes
Semi-Infinite Diffusion
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Electroactive polymers are made by loading redox complexes inside different polymeric crosslinked hydrogels. A redox cation (tris(phenanthroline)iron(II) (TPFeII) is sorbed in anionic, neutral and cationic hydrogels while redox anions (ferricyanide) is taken up inside an anionic hydrogel. Moreover, a redox anion (nitrite) and a cation (TPFeII) are simultaneously absorbed in an anionic hydrogel. Homopolymeric hydrogels of 2-acrylamidopropanesulfonic acid (PAMPS), acrylic acid (PAA) or (3-acrylamidopropyl)trimethylammonium chloride) (PAPMTAC), crosslinked with bisacrylamide, are synthesized by radical polymerization. The same method is used to produce a 1:1 copolymeric hydrogel of acrylic acid and 2-acrylamidopropanesulfonic acid (PAA-co-AMPS). The physicochemical properties of the hydrogels are evaluated by measuring the swelling kinetics, in the same conditions of the electrochemical measurements. The cyclic voltammetric response of all electroactive polymers show quasireversible electron transfer (Eqrev mechanism) while the hydrogel loaded with TPFeII and nitrite show a catalyzed oxidation (EqrevC mechanism). The electrochemical parameters (diffusion coefficient and charge transfer constant) of TPFeII loaded inside PAMPS, PAA and PAA-co-AMPS are measured using chronoamperometry and digital simulation of the cyclic voltammetry. The Stokes-Einstein equation is used to calculate the effective viscosity of the hydrogel matrixes using the diffusion coefficients of a redox complex (TPFeII) determined inside the hydrogels and the same parameters determined in aqueous solution. The calculated viscosity correlates, with a negative slope, with the swelling rate constant of the hydrogel matrix. The heterogeneous charge transfer of the redox complex inside ionomers (PAMPS and PAA-co-PAMPS) is nearly as fast as in solution, while the charge transfer inside the neutral PAA is ca. 100 times smaller. The measured charge transfer constants correlate with the calculated viscosity, revealing the effect of solvent dynamics on the charge transfer, according to Marcus theory for strongly adiabatic electron transfer. In that way, it is shown that the electrochemical measurements are able to monitor the local solvation properties of the hydrogel matrix. These results suggest novel ways to produce electroactive polymers by loading redox active substances inside hydrogels, even when the hydrogel matrix is neutral or bear the same charge than the redox probe. The redox complexes are present as dilute solutions and the hydrogel dimensions fulfill the semi-infinite diffusion boundary conditions. Therefore, the data analysis can be performed using the theoretical framework for electrochemical measurements in liquid solvents.
Fil: Martinez, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
Fil: Bruno, Mariano Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
Fil: Miras, Maria Cristina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
Fil: Barbero, César Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
description Electroactive polymers are made by loading redox complexes inside different polymeric crosslinked hydrogels. A redox cation (tris(phenanthroline)iron(II) (TPFeII) is sorbed in anionic, neutral and cationic hydrogels while redox anions (ferricyanide) is taken up inside an anionic hydrogel. Moreover, a redox anion (nitrite) and a cation (TPFeII) are simultaneously absorbed in an anionic hydrogel. Homopolymeric hydrogels of 2-acrylamidopropanesulfonic acid (PAMPS), acrylic acid (PAA) or (3-acrylamidopropyl)trimethylammonium chloride) (PAPMTAC), crosslinked with bisacrylamide, are synthesized by radical polymerization. The same method is used to produce a 1:1 copolymeric hydrogel of acrylic acid and 2-acrylamidopropanesulfonic acid (PAA-co-AMPS). The physicochemical properties of the hydrogels are evaluated by measuring the swelling kinetics, in the same conditions of the electrochemical measurements. The cyclic voltammetric response of all electroactive polymers show quasireversible electron transfer (Eqrev mechanism) while the hydrogel loaded with TPFeII and nitrite show a catalyzed oxidation (EqrevC mechanism). The electrochemical parameters (diffusion coefficient and charge transfer constant) of TPFeII loaded inside PAMPS, PAA and PAA-co-AMPS are measured using chronoamperometry and digital simulation of the cyclic voltammetry. The Stokes-Einstein equation is used to calculate the effective viscosity of the hydrogel matrixes using the diffusion coefficients of a redox complex (TPFeII) determined inside the hydrogels and the same parameters determined in aqueous solution. The calculated viscosity correlates, with a negative slope, with the swelling rate constant of the hydrogel matrix. The heterogeneous charge transfer of the redox complex inside ionomers (PAMPS and PAA-co-PAMPS) is nearly as fast as in solution, while the charge transfer inside the neutral PAA is ca. 100 times smaller. The measured charge transfer constants correlate with the calculated viscosity, revealing the effect of solvent dynamics on the charge transfer, according to Marcus theory for strongly adiabatic electron transfer. In that way, it is shown that the electrochemical measurements are able to monitor the local solvation properties of the hydrogel matrix. These results suggest novel ways to produce electroactive polymers by loading redox active substances inside hydrogels, even when the hydrogel matrix is neutral or bear the same charge than the redox probe. The redox complexes are present as dilute solutions and the hydrogel dimensions fulfill the semi-infinite diffusion boundary conditions. Therefore, the data analysis can be performed using the theoretical framework for electrochemical measurements in liquid solvents.
publishDate 2016
dc.date.none.fl_str_mv 2016-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/72291
Martinez, María Victoria; Bruno, Mariano Martín; Miras, Maria Cristina; Barbero, César Alfredo; Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 219; 11-2016; 363-376
0013-4686
CONICET Digital
CONICET
url http://hdl.handle.net/11336/72291
identifier_str_mv Martinez, María Victoria; Bruno, Mariano Martín; Miras, Maria Cristina; Barbero, César Alfredo; Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 219; 11-2016; 363-376
0013-4686
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0013468616320941
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.electacta.2016.10.007
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082885266702336
score 13.22299