Electrochemically Enhanced Delivery of Pemetrexed from Electroactive Hydrogels

Autores
Au Yong, Sophie; Firlak, Melike; Draper, Emily R.; Municoy, Sofia; Ashton, Mark D.; Akien, Geoffrey R.; Halcovitch, Nathan R.; Baldock, Sara J.; Martin Hirsch, Pierre; Desimone, Martín Federico; Hardy, John G.
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Electroactive hydrogels based on derivatives of polyethyleneglycol (PEG), chitosan and polypyrrole were prepared via a combination of photopolymerization and oxidative chemical polymerization, and optionally doped with anions (e.g., lignin, drugs, etc.). The products were analyzed with a variety of techniques, including: FT-IR, UV-Vis, 1H NMR (solution state), 13C NMR (solid state), XRD, TGA, SEM, swelling ratios and rheology. The conductive gels swell ca. 8 times less than the non-conductive gels due to the presence of the interpenetrating network (IPN) of polypyrrole and lignin. A rheological study showed that the non-conductive gels are soft (G′ 0.35 kPa, G″ 0.02 kPa) with properties analogous to brain tissue, whereas the conductive gels are significantly stronger (G′ 30 kPa, G″ 19 kPa) analogous to breast tissue due to the presence of the IPN of polypyrrole and lignin. The potential of these biomaterials to be used for biomedical applications was validated in vitro by cell culture studies (assessing adhesion and proliferation of fibroblasts) and drug delivery studies (electrochemically loading the FDA-approved chemotherapeutic pemetrexed and measuring passive and stimulated release); indeed, the application of electrical stimulus enhanced the release of PEM from gels by ca. 10–15% relative to the passive release control experiment for each application of electrical stimulation over a short period analogous to the duration of stimulation applied for electrochemotherapy. It is foreseeable that such materials could be integrated in electrochemotherapeutic medical devices, e.g., electrode arrays or plates currently used in the clinic.
Fil: Au Yong, Sophie. Lancaster University; Reino Unido
Fil: Firlak, Melike. Lancaster University; Reino Unido
Fil: Draper, Emily R.. University of Glasgow; Reino Unido
Fil: Municoy, Sofia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; Argentina
Fil: Ashton, Mark D.. Lancaster University; Reino Unido
Fil: Akien, Geoffrey R.. Lancaster University; Reino Unido
Fil: Halcovitch, Nathan R.. Lancaster University; Reino Unido
Fil: Baldock, Sara J.. Royal Preston Hospital; Reino Unido
Fil: Martin Hirsch, Pierre. Lancaster University; Reino Unido
Fil: Desimone, Martín Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; Argentina
Fil: Hardy, John G.. Lancaster University; Reino Unido
Materia
BIOMEDICAL ENGINEERING
DRUG DELIVERY
HYDROGELS
STIMULI-RESPONSIVE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/210416

id CONICETDig_2917ac90f347e2a7d159bcd3df4a4273
oai_identifier_str oai:ri.conicet.gov.ar:11336/210416
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Electrochemically Enhanced Delivery of Pemetrexed from Electroactive HydrogelsAu Yong, SophieFirlak, MelikeDraper, Emily R.Municoy, SofiaAshton, Mark D.Akien, Geoffrey R.Halcovitch, Nathan R.Baldock, Sara J.Martin Hirsch, PierreDesimone, Martín FedericoHardy, John G.BIOMEDICAL ENGINEERINGDRUG DELIVERYHYDROGELSSTIMULI-RESPONSIVEhttps://purl.org/becyt/ford/2.9https://purl.org/becyt/ford/2Electroactive hydrogels based on derivatives of polyethyleneglycol (PEG), chitosan and polypyrrole were prepared via a combination of photopolymerization and oxidative chemical polymerization, and optionally doped with anions (e.g., lignin, drugs, etc.). The products were analyzed with a variety of techniques, including: FT-IR, UV-Vis, 1H NMR (solution state), 13C NMR (solid state), XRD, TGA, SEM, swelling ratios and rheology. The conductive gels swell ca. 8 times less than the non-conductive gels due to the presence of the interpenetrating network (IPN) of polypyrrole and lignin. A rheological study showed that the non-conductive gels are soft (G′ 0.35 kPa, G″ 0.02 kPa) with properties analogous to brain tissue, whereas the conductive gels are significantly stronger (G′ 30 kPa, G″ 19 kPa) analogous to breast tissue due to the presence of the IPN of polypyrrole and lignin. The potential of these biomaterials to be used for biomedical applications was validated in vitro by cell culture studies (assessing adhesion and proliferation of fibroblasts) and drug delivery studies (electrochemically loading the FDA-approved chemotherapeutic pemetrexed and measuring passive and stimulated release); indeed, the application of electrical stimulus enhanced the release of PEM from gels by ca. 10–15% relative to the passive release control experiment for each application of electrical stimulation over a short period analogous to the duration of stimulation applied for electrochemotherapy. It is foreseeable that such materials could be integrated in electrochemotherapeutic medical devices, e.g., electrode arrays or plates currently used in the clinic.Fil: Au Yong, Sophie. Lancaster University; Reino UnidoFil: Firlak, Melike. Lancaster University; Reino UnidoFil: Draper, Emily R.. University of Glasgow; Reino UnidoFil: Municoy, Sofia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; ArgentinaFil: Ashton, Mark D.. Lancaster University; Reino UnidoFil: Akien, Geoffrey R.. Lancaster University; Reino UnidoFil: Halcovitch, Nathan R.. Lancaster University; Reino UnidoFil: Baldock, Sara J.. Royal Preston Hospital; Reino UnidoFil: Martin Hirsch, Pierre. Lancaster University; Reino UnidoFil: Desimone, Martín Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; ArgentinaFil: Hardy, John G.. Lancaster University; Reino UnidoMDPI2022-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/210416Au Yong, Sophie; Firlak, Melike; Draper, Emily R.; Municoy, Sofia; Ashton, Mark D.; et al.; Electrochemically Enhanced Delivery of Pemetrexed from Electroactive Hydrogels; MDPI; Polymers; 14; 22; 11-2022; 1-192073-4360CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/polym14224953info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:40Zoai:ri.conicet.gov.ar:11336/210416instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:41.199CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Electrochemically Enhanced Delivery of Pemetrexed from Electroactive Hydrogels
title Electrochemically Enhanced Delivery of Pemetrexed from Electroactive Hydrogels
spellingShingle Electrochemically Enhanced Delivery of Pemetrexed from Electroactive Hydrogels
Au Yong, Sophie
BIOMEDICAL ENGINEERING
DRUG DELIVERY
HYDROGELS
STIMULI-RESPONSIVE
title_short Electrochemically Enhanced Delivery of Pemetrexed from Electroactive Hydrogels
title_full Electrochemically Enhanced Delivery of Pemetrexed from Electroactive Hydrogels
title_fullStr Electrochemically Enhanced Delivery of Pemetrexed from Electroactive Hydrogels
title_full_unstemmed Electrochemically Enhanced Delivery of Pemetrexed from Electroactive Hydrogels
title_sort Electrochemically Enhanced Delivery of Pemetrexed from Electroactive Hydrogels
dc.creator.none.fl_str_mv Au Yong, Sophie
Firlak, Melike
Draper, Emily R.
Municoy, Sofia
Ashton, Mark D.
Akien, Geoffrey R.
Halcovitch, Nathan R.
Baldock, Sara J.
Martin Hirsch, Pierre
Desimone, Martín Federico
Hardy, John G.
author Au Yong, Sophie
author_facet Au Yong, Sophie
Firlak, Melike
Draper, Emily R.
Municoy, Sofia
Ashton, Mark D.
Akien, Geoffrey R.
Halcovitch, Nathan R.
Baldock, Sara J.
Martin Hirsch, Pierre
Desimone, Martín Federico
Hardy, John G.
author_role author
author2 Firlak, Melike
Draper, Emily R.
Municoy, Sofia
Ashton, Mark D.
Akien, Geoffrey R.
Halcovitch, Nathan R.
Baldock, Sara J.
Martin Hirsch, Pierre
Desimone, Martín Federico
Hardy, John G.
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv BIOMEDICAL ENGINEERING
DRUG DELIVERY
HYDROGELS
STIMULI-RESPONSIVE
topic BIOMEDICAL ENGINEERING
DRUG DELIVERY
HYDROGELS
STIMULI-RESPONSIVE
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.9
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Electroactive hydrogels based on derivatives of polyethyleneglycol (PEG), chitosan and polypyrrole were prepared via a combination of photopolymerization and oxidative chemical polymerization, and optionally doped with anions (e.g., lignin, drugs, etc.). The products were analyzed with a variety of techniques, including: FT-IR, UV-Vis, 1H NMR (solution state), 13C NMR (solid state), XRD, TGA, SEM, swelling ratios and rheology. The conductive gels swell ca. 8 times less than the non-conductive gels due to the presence of the interpenetrating network (IPN) of polypyrrole and lignin. A rheological study showed that the non-conductive gels are soft (G′ 0.35 kPa, G″ 0.02 kPa) with properties analogous to brain tissue, whereas the conductive gels are significantly stronger (G′ 30 kPa, G″ 19 kPa) analogous to breast tissue due to the presence of the IPN of polypyrrole and lignin. The potential of these biomaterials to be used for biomedical applications was validated in vitro by cell culture studies (assessing adhesion and proliferation of fibroblasts) and drug delivery studies (electrochemically loading the FDA-approved chemotherapeutic pemetrexed and measuring passive and stimulated release); indeed, the application of electrical stimulus enhanced the release of PEM from gels by ca. 10–15% relative to the passive release control experiment for each application of electrical stimulation over a short period analogous to the duration of stimulation applied for electrochemotherapy. It is foreseeable that such materials could be integrated in electrochemotherapeutic medical devices, e.g., electrode arrays or plates currently used in the clinic.
Fil: Au Yong, Sophie. Lancaster University; Reino Unido
Fil: Firlak, Melike. Lancaster University; Reino Unido
Fil: Draper, Emily R.. University of Glasgow; Reino Unido
Fil: Municoy, Sofia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; Argentina
Fil: Ashton, Mark D.. Lancaster University; Reino Unido
Fil: Akien, Geoffrey R.. Lancaster University; Reino Unido
Fil: Halcovitch, Nathan R.. Lancaster University; Reino Unido
Fil: Baldock, Sara J.. Royal Preston Hospital; Reino Unido
Fil: Martin Hirsch, Pierre. Lancaster University; Reino Unido
Fil: Desimone, Martín Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; Argentina
Fil: Hardy, John G.. Lancaster University; Reino Unido
description Electroactive hydrogels based on derivatives of polyethyleneglycol (PEG), chitosan and polypyrrole were prepared via a combination of photopolymerization and oxidative chemical polymerization, and optionally doped with anions (e.g., lignin, drugs, etc.). The products were analyzed with a variety of techniques, including: FT-IR, UV-Vis, 1H NMR (solution state), 13C NMR (solid state), XRD, TGA, SEM, swelling ratios and rheology. The conductive gels swell ca. 8 times less than the non-conductive gels due to the presence of the interpenetrating network (IPN) of polypyrrole and lignin. A rheological study showed that the non-conductive gels are soft (G′ 0.35 kPa, G″ 0.02 kPa) with properties analogous to brain tissue, whereas the conductive gels are significantly stronger (G′ 30 kPa, G″ 19 kPa) analogous to breast tissue due to the presence of the IPN of polypyrrole and lignin. The potential of these biomaterials to be used for biomedical applications was validated in vitro by cell culture studies (assessing adhesion and proliferation of fibroblasts) and drug delivery studies (electrochemically loading the FDA-approved chemotherapeutic pemetrexed and measuring passive and stimulated release); indeed, the application of electrical stimulus enhanced the release of PEM from gels by ca. 10–15% relative to the passive release control experiment for each application of electrical stimulation over a short period analogous to the duration of stimulation applied for electrochemotherapy. It is foreseeable that such materials could be integrated in electrochemotherapeutic medical devices, e.g., electrode arrays or plates currently used in the clinic.
publishDate 2022
dc.date.none.fl_str_mv 2022-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/210416
Au Yong, Sophie; Firlak, Melike; Draper, Emily R.; Municoy, Sofia; Ashton, Mark D.; et al.; Electrochemically Enhanced Delivery of Pemetrexed from Electroactive Hydrogels; MDPI; Polymers; 14; 22; 11-2022; 1-19
2073-4360
CONICET Digital
CONICET
url http://hdl.handle.net/11336/210416
identifier_str_mv Au Yong, Sophie; Firlak, Melike; Draper, Emily R.; Municoy, Sofia; Ashton, Mark D.; et al.; Electrochemically Enhanced Delivery of Pemetrexed from Electroactive Hydrogels; MDPI; Polymers; 14; 22; 11-2022; 1-19
2073-4360
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3390/polym14224953
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613747457392640
score 13.070432