Functional Materials Made by Combining Hydrogels (Cross-Linked Polyacrylamides) and Conducting Polymers (Polyanilines)—A Critical Review

Autores
Barbero, César Alfredo
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Hydrogels made of cross-linked polyacrlyamides (cPAM) and conducting materials made of polyanilines (PANIs) are both the most widely used materials in each category. This is due to their accessible monomers, easy synthesis and excellent properties. Therefore, the combination of these materials produces composites which show enhanced properties and also synergy between the cPAM properties (e.g., elasticity) and those of PANIs (e.g., conductivity). The most common way to produce the composites is to form the gel by radical polymerization (usually by redox initiators) then incorporate the PANIs into the network by oxidative polymerization of anilines. It is often claimed that the product is a semi-interpenetrated network (s-IPN) made of linear PANIs penetrating the cPAM network. However, there is evidence that the nanopores of the hydrogel become filled with PANIs nanoparticles, producing a composite. On the other hand, swelling the cPAM in true solutions of PANIs macromolecules renders s-IPN with different properties. Technological applications of the composites have been developed, such as photothermal (PTA)/electromechanical actuators, supercapacitors, movement/pressure sensors, etc. PTA devices rely on the absorption of electromagnetic radiation (light, microwaves, radiofrequency) by PANIs, which heats up the composite, triggering the phase transition of a thermosensitive cPAM. Therefore, the synergy of properties of both polymers is beneficial.
Fil: Barbero, César Alfredo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
Materia
ACTUATOR
CONDUCTIVITY
HYDROGELS
NANOCOMPOSITE
PHOTOTHERMAL
POLYACRYLAMIDES
POLYANILINES
SEMI-INTERPENETRATED NETWORK
SENSOR
SUPERCAPACITOR
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/226350

id CONICETDig_b954f208ef878cd4c161a51984bac339
oai_identifier_str oai:ri.conicet.gov.ar:11336/226350
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Functional Materials Made by Combining Hydrogels (Cross-Linked Polyacrylamides) and Conducting Polymers (Polyanilines)—A Critical ReviewBarbero, César AlfredoACTUATORCONDUCTIVITYHYDROGELSNANOCOMPOSITEPHOTOTHERMALPOLYACRYLAMIDESPOLYANILINESSEMI-INTERPENETRATED NETWORKSENSORSUPERCAPACITORhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Hydrogels made of cross-linked polyacrlyamides (cPAM) and conducting materials made of polyanilines (PANIs) are both the most widely used materials in each category. This is due to their accessible monomers, easy synthesis and excellent properties. Therefore, the combination of these materials produces composites which show enhanced properties and also synergy between the cPAM properties (e.g., elasticity) and those of PANIs (e.g., conductivity). The most common way to produce the composites is to form the gel by radical polymerization (usually by redox initiators) then incorporate the PANIs into the network by oxidative polymerization of anilines. It is often claimed that the product is a semi-interpenetrated network (s-IPN) made of linear PANIs penetrating the cPAM network. However, there is evidence that the nanopores of the hydrogel become filled with PANIs nanoparticles, producing a composite. On the other hand, swelling the cPAM in true solutions of PANIs macromolecules renders s-IPN with different properties. Technological applications of the composites have been developed, such as photothermal (PTA)/electromechanical actuators, supercapacitors, movement/pressure sensors, etc. PTA devices rely on the absorption of electromagnetic radiation (light, microwaves, radiofrequency) by PANIs, which heats up the composite, triggering the phase transition of a thermosensitive cPAM. Therefore, the synergy of properties of both polymers is beneficial.Fil: Barbero, César Alfredo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaMDPI2023-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/226350Barbero, César Alfredo; Functional Materials Made by Combining Hydrogels (Cross-Linked Polyacrylamides) and Conducting Polymers (Polyanilines)—A Critical Review; MDPI; Polymers; 15; 10; 5-2023; 1-212073-4360CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4360/15/10/2240info:eu-repo/semantics/altIdentifier/doi/10.3390/polym15102240info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:48:05Zoai:ri.conicet.gov.ar:11336/226350instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:48:05.591CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Functional Materials Made by Combining Hydrogels (Cross-Linked Polyacrylamides) and Conducting Polymers (Polyanilines)—A Critical Review
title Functional Materials Made by Combining Hydrogels (Cross-Linked Polyacrylamides) and Conducting Polymers (Polyanilines)—A Critical Review
spellingShingle Functional Materials Made by Combining Hydrogels (Cross-Linked Polyacrylamides) and Conducting Polymers (Polyanilines)—A Critical Review
Barbero, César Alfredo
ACTUATOR
CONDUCTIVITY
HYDROGELS
NANOCOMPOSITE
PHOTOTHERMAL
POLYACRYLAMIDES
POLYANILINES
SEMI-INTERPENETRATED NETWORK
SENSOR
SUPERCAPACITOR
title_short Functional Materials Made by Combining Hydrogels (Cross-Linked Polyacrylamides) and Conducting Polymers (Polyanilines)—A Critical Review
title_full Functional Materials Made by Combining Hydrogels (Cross-Linked Polyacrylamides) and Conducting Polymers (Polyanilines)—A Critical Review
title_fullStr Functional Materials Made by Combining Hydrogels (Cross-Linked Polyacrylamides) and Conducting Polymers (Polyanilines)—A Critical Review
title_full_unstemmed Functional Materials Made by Combining Hydrogels (Cross-Linked Polyacrylamides) and Conducting Polymers (Polyanilines)—A Critical Review
title_sort Functional Materials Made by Combining Hydrogels (Cross-Linked Polyacrylamides) and Conducting Polymers (Polyanilines)—A Critical Review
dc.creator.none.fl_str_mv Barbero, César Alfredo
author Barbero, César Alfredo
author_facet Barbero, César Alfredo
author_role author
dc.subject.none.fl_str_mv ACTUATOR
CONDUCTIVITY
HYDROGELS
NANOCOMPOSITE
PHOTOTHERMAL
POLYACRYLAMIDES
POLYANILINES
SEMI-INTERPENETRATED NETWORK
SENSOR
SUPERCAPACITOR
topic ACTUATOR
CONDUCTIVITY
HYDROGELS
NANOCOMPOSITE
PHOTOTHERMAL
POLYACRYLAMIDES
POLYANILINES
SEMI-INTERPENETRATED NETWORK
SENSOR
SUPERCAPACITOR
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Hydrogels made of cross-linked polyacrlyamides (cPAM) and conducting materials made of polyanilines (PANIs) are both the most widely used materials in each category. This is due to their accessible monomers, easy synthesis and excellent properties. Therefore, the combination of these materials produces composites which show enhanced properties and also synergy between the cPAM properties (e.g., elasticity) and those of PANIs (e.g., conductivity). The most common way to produce the composites is to form the gel by radical polymerization (usually by redox initiators) then incorporate the PANIs into the network by oxidative polymerization of anilines. It is often claimed that the product is a semi-interpenetrated network (s-IPN) made of linear PANIs penetrating the cPAM network. However, there is evidence that the nanopores of the hydrogel become filled with PANIs nanoparticles, producing a composite. On the other hand, swelling the cPAM in true solutions of PANIs macromolecules renders s-IPN with different properties. Technological applications of the composites have been developed, such as photothermal (PTA)/electromechanical actuators, supercapacitors, movement/pressure sensors, etc. PTA devices rely on the absorption of electromagnetic radiation (light, microwaves, radiofrequency) by PANIs, which heats up the composite, triggering the phase transition of a thermosensitive cPAM. Therefore, the synergy of properties of both polymers is beneficial.
Fil: Barbero, César Alfredo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
description Hydrogels made of cross-linked polyacrlyamides (cPAM) and conducting materials made of polyanilines (PANIs) are both the most widely used materials in each category. This is due to their accessible monomers, easy synthesis and excellent properties. Therefore, the combination of these materials produces composites which show enhanced properties and also synergy between the cPAM properties (e.g., elasticity) and those of PANIs (e.g., conductivity). The most common way to produce the composites is to form the gel by radical polymerization (usually by redox initiators) then incorporate the PANIs into the network by oxidative polymerization of anilines. It is often claimed that the product is a semi-interpenetrated network (s-IPN) made of linear PANIs penetrating the cPAM network. However, there is evidence that the nanopores of the hydrogel become filled with PANIs nanoparticles, producing a composite. On the other hand, swelling the cPAM in true solutions of PANIs macromolecules renders s-IPN with different properties. Technological applications of the composites have been developed, such as photothermal (PTA)/electromechanical actuators, supercapacitors, movement/pressure sensors, etc. PTA devices rely on the absorption of electromagnetic radiation (light, microwaves, radiofrequency) by PANIs, which heats up the composite, triggering the phase transition of a thermosensitive cPAM. Therefore, the synergy of properties of both polymers is beneficial.
publishDate 2023
dc.date.none.fl_str_mv 2023-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/226350
Barbero, César Alfredo; Functional Materials Made by Combining Hydrogels (Cross-Linked Polyacrylamides) and Conducting Polymers (Polyanilines)—A Critical Review; MDPI; Polymers; 15; 10; 5-2023; 1-21
2073-4360
CONICET Digital
CONICET
url http://hdl.handle.net/11336/226350
identifier_str_mv Barbero, César Alfredo; Functional Materials Made by Combining Hydrogels (Cross-Linked Polyacrylamides) and Conducting Polymers (Polyanilines)—A Critical Review; MDPI; Polymers; 15; 10; 5-2023; 1-21
2073-4360
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4360/15/10/2240
info:eu-repo/semantics/altIdentifier/doi/10.3390/polym15102240
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082999543660544
score 13.22299