A comparative approach of simple green sample preparation methods based on optimization strategies for nutrient analysis of food

Autores
Jofre, Cora; Giacomino, Valentina; Wagner, Marcelo; Zaldarriaga Heredia, Jorgelina; Montemerlo, Antonella Evelin; Camiña, José Manuel; Azcarate, Silvana Mariela; Savio, Marianela
Año de publicación
2023
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The chemical composition is regarded as the most important indicator to evaluate food quality and its nutritional value. Elemental composition (major, minor, trace and rare earth elements) reflects the particular environment and can provide uniquely representative fingerprints, making significant progress in authenticity studies. However, when using spectrochemical instrumental methods for inorganic trace analysis in solid samples, it is necessary to obtain a representative solution with the analytes. Sample preparation is a challenging step in the analytical procedure, where wet digestion sample preparation methods are widely used in analytical chemistry. In this context, Green Analytical Chemistry (GAC) searches for cheaper, more efficient and accurate greener alternatives, developing simple and inexpensive methods for analytes qualitative and/or quantitative determination. There is still a constant search for new alternatives for time-efficient pretreatments, reducing operating steps, contamination and reagent concentrations. In order to comply with GAC recommendations, the aim of this work was to develop and optimize analytical strategies for complex samples preparation extracting with dilute reagents and assisted by ultrasound (USAE) and infrared (IRAE) radiations for multielemental determination by Microwave induced plasma atomic emission spectrometry (MIP OES). Likewise, a comparative analysis was carried out between the two procedures under their optimal conditions and on three different samples (animal feed, grapes and pork meat). The experimental optimization of each sample preparation system was carried out through a face centered central composite design (FC-CCD), assessing 4 and 5 factors for IRAE and USAE, respectively. Dissolved organic carbon (DOC), residual acidity (RA) and solid residue (SR) were evaluated as responses employing desirability function. Thus, response surface methodology was implemented to find the best combination of mass, diluted reagents (HNO3 and H2O2), time and temperature in order to minimize the studied responses for elemental extraction in analyzed samples. The selected factors were evaluated in a range of 100-500 mg (sample mass), 15-45 min (heating time), 2-7 M (HNO3 concentration) and 10-30 % (H2O2 concentration) for both designs and the temperature between 30-60°C was considered in the USAE design while for the IRAE it was kept constant at 190°C. The comparison between both methodologies revealed a better performance of IRAE than USAE for the parameters studied, achieving lower values for DOC, RA and SR, which are statistically significant for the1772three samples under study. On the other hand, different optimal conditions were acquired for the different samples, evidencing that the sample preparation also depends on the sample under study. For this reason, after their experimental validation, the optimal combinations of IRAE design for each sample were selected to elucidate sample composition through multielemental analysis. Acquired results were in accordance with guidelines values.
Fil: Jofre, Cora. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Giacomino, Valentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Wagner, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Zaldarriaga Heredia, Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Montemerlo, Antonella Evelin. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Camiña, José Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Savio, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
VIII Congreso Internacional de Ciencia y Tecnología de los Alimentos
Cordoba
Argentina
Ministerio de Ciencia y Tecnología
Materia
Agri-food
Multivariate Optimization
Multielemental Analysis
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/243874

id CONICETDig_71ebe665a3f2a06b78ccc364f113abc2
oai_identifier_str oai:ri.conicet.gov.ar:11336/243874
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A comparative approach of simple green sample preparation methods based on optimization strategies for nutrient analysis of foodJofre, CoraGiacomino, ValentinaWagner, MarceloZaldarriaga Heredia, JorgelinaMontemerlo, Antonella EvelinCamiña, José ManuelAzcarate, Silvana MarielaSavio, MarianelaAgri-foodMultivariate OptimizationMultielemental Analysishttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The chemical composition is regarded as the most important indicator to evaluate food quality and its nutritional value. Elemental composition (major, minor, trace and rare earth elements) reflects the particular environment and can provide uniquely representative fingerprints, making significant progress in authenticity studies. However, when using spectrochemical instrumental methods for inorganic trace analysis in solid samples, it is necessary to obtain a representative solution with the analytes. Sample preparation is a challenging step in the analytical procedure, where wet digestion sample preparation methods are widely used in analytical chemistry. In this context, Green Analytical Chemistry (GAC) searches for cheaper, more efficient and accurate greener alternatives, developing simple and inexpensive methods for analytes qualitative and/or quantitative determination. There is still a constant search for new alternatives for time-efficient pretreatments, reducing operating steps, contamination and reagent concentrations. In order to comply with GAC recommendations, the aim of this work was to develop and optimize analytical strategies for complex samples preparation extracting with dilute reagents and assisted by ultrasound (USAE) and infrared (IRAE) radiations for multielemental determination by Microwave induced plasma atomic emission spectrometry (MIP OES). Likewise, a comparative analysis was carried out between the two procedures under their optimal conditions and on three different samples (animal feed, grapes and pork meat). The experimental optimization of each sample preparation system was carried out through a face centered central composite design (FC-CCD), assessing 4 and 5 factors for IRAE and USAE, respectively. Dissolved organic carbon (DOC), residual acidity (RA) and solid residue (SR) were evaluated as responses employing desirability function. Thus, response surface methodology was implemented to find the best combination of mass, diluted reagents (HNO3 and H2O2), time and temperature in order to minimize the studied responses for elemental extraction in analyzed samples. The selected factors were evaluated in a range of 100-500 mg (sample mass), 15-45 min (heating time), 2-7 M (HNO3 concentration) and 10-30 % (H2O2 concentration) for both designs and the temperature between 30-60°C was considered in the USAE design while for the IRAE it was kept constant at 190°C. The comparison between both methodologies revealed a better performance of IRAE than USAE for the parameters studied, achieving lower values for DOC, RA and SR, which are statistically significant for the1772three samples under study. On the other hand, different optimal conditions were acquired for the different samples, evidencing that the sample preparation also depends on the sample under study. For this reason, after their experimental validation, the optimal combinations of IRAE design for each sample were selected to elucidate sample composition through multielemental analysis. Acquired results were in accordance with guidelines values.Fil: Jofre, Cora. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Giacomino, Valentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Wagner, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Zaldarriaga Heredia, Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Montemerlo, Antonella Evelin. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Camiña, José Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Savio, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaVIII Congreso Internacional de Ciencia y Tecnología de los AlimentosCordobaArgentinaMinisterio de Ciencia y TecnologíaMinisterio de Ciencia y Tecnología2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/243874A comparative approach of simple green sample preparation methods based on optimization strategies for nutrient analysis of food; VIII Congreso Internacional de Ciencia y Tecnología de los Alimentos; Cordoba; Argentina; 2022; 1771-1771CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://cicytac.cba.gov.ar/info:eu-repo/semantics/altIdentifier/url/https://cicytac.cba.gov.ar/ediciones-anteriores/Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:59Zoai:ri.conicet.gov.ar:11336/243874instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:38:00.131CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A comparative approach of simple green sample preparation methods based on optimization strategies for nutrient analysis of food
title A comparative approach of simple green sample preparation methods based on optimization strategies for nutrient analysis of food
spellingShingle A comparative approach of simple green sample preparation methods based on optimization strategies for nutrient analysis of food
Jofre, Cora
Agri-food
Multivariate Optimization
Multielemental Analysis
title_short A comparative approach of simple green sample preparation methods based on optimization strategies for nutrient analysis of food
title_full A comparative approach of simple green sample preparation methods based on optimization strategies for nutrient analysis of food
title_fullStr A comparative approach of simple green sample preparation methods based on optimization strategies for nutrient analysis of food
title_full_unstemmed A comparative approach of simple green sample preparation methods based on optimization strategies for nutrient analysis of food
title_sort A comparative approach of simple green sample preparation methods based on optimization strategies for nutrient analysis of food
dc.creator.none.fl_str_mv Jofre, Cora
Giacomino, Valentina
Wagner, Marcelo
Zaldarriaga Heredia, Jorgelina
Montemerlo, Antonella Evelin
Camiña, José Manuel
Azcarate, Silvana Mariela
Savio, Marianela
author Jofre, Cora
author_facet Jofre, Cora
Giacomino, Valentina
Wagner, Marcelo
Zaldarriaga Heredia, Jorgelina
Montemerlo, Antonella Evelin
Camiña, José Manuel
Azcarate, Silvana Mariela
Savio, Marianela
author_role author
author2 Giacomino, Valentina
Wagner, Marcelo
Zaldarriaga Heredia, Jorgelina
Montemerlo, Antonella Evelin
Camiña, José Manuel
Azcarate, Silvana Mariela
Savio, Marianela
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Agri-food
Multivariate Optimization
Multielemental Analysis
topic Agri-food
Multivariate Optimization
Multielemental Analysis
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The chemical composition is regarded as the most important indicator to evaluate food quality and its nutritional value. Elemental composition (major, minor, trace and rare earth elements) reflects the particular environment and can provide uniquely representative fingerprints, making significant progress in authenticity studies. However, when using spectrochemical instrumental methods for inorganic trace analysis in solid samples, it is necessary to obtain a representative solution with the analytes. Sample preparation is a challenging step in the analytical procedure, where wet digestion sample preparation methods are widely used in analytical chemistry. In this context, Green Analytical Chemistry (GAC) searches for cheaper, more efficient and accurate greener alternatives, developing simple and inexpensive methods for analytes qualitative and/or quantitative determination. There is still a constant search for new alternatives for time-efficient pretreatments, reducing operating steps, contamination and reagent concentrations. In order to comply with GAC recommendations, the aim of this work was to develop and optimize analytical strategies for complex samples preparation extracting with dilute reagents and assisted by ultrasound (USAE) and infrared (IRAE) radiations for multielemental determination by Microwave induced plasma atomic emission spectrometry (MIP OES). Likewise, a comparative analysis was carried out between the two procedures under their optimal conditions and on three different samples (animal feed, grapes and pork meat). The experimental optimization of each sample preparation system was carried out through a face centered central composite design (FC-CCD), assessing 4 and 5 factors for IRAE and USAE, respectively. Dissolved organic carbon (DOC), residual acidity (RA) and solid residue (SR) were evaluated as responses employing desirability function. Thus, response surface methodology was implemented to find the best combination of mass, diluted reagents (HNO3 and H2O2), time and temperature in order to minimize the studied responses for elemental extraction in analyzed samples. The selected factors were evaluated in a range of 100-500 mg (sample mass), 15-45 min (heating time), 2-7 M (HNO3 concentration) and 10-30 % (H2O2 concentration) for both designs and the temperature between 30-60°C was considered in the USAE design while for the IRAE it was kept constant at 190°C. The comparison between both methodologies revealed a better performance of IRAE than USAE for the parameters studied, achieving lower values for DOC, RA and SR, which are statistically significant for the1772three samples under study. On the other hand, different optimal conditions were acquired for the different samples, evidencing that the sample preparation also depends on the sample under study. For this reason, after their experimental validation, the optimal combinations of IRAE design for each sample were selected to elucidate sample composition through multielemental analysis. Acquired results were in accordance with guidelines values.
Fil: Jofre, Cora. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Giacomino, Valentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Wagner, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Zaldarriaga Heredia, Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Montemerlo, Antonella Evelin. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Camiña, José Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Savio, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
VIII Congreso Internacional de Ciencia y Tecnología de los Alimentos
Cordoba
Argentina
Ministerio de Ciencia y Tecnología
description The chemical composition is regarded as the most important indicator to evaluate food quality and its nutritional value. Elemental composition (major, minor, trace and rare earth elements) reflects the particular environment and can provide uniquely representative fingerprints, making significant progress in authenticity studies. However, when using spectrochemical instrumental methods for inorganic trace analysis in solid samples, it is necessary to obtain a representative solution with the analytes. Sample preparation is a challenging step in the analytical procedure, where wet digestion sample preparation methods are widely used in analytical chemistry. In this context, Green Analytical Chemistry (GAC) searches for cheaper, more efficient and accurate greener alternatives, developing simple and inexpensive methods for analytes qualitative and/or quantitative determination. There is still a constant search for new alternatives for time-efficient pretreatments, reducing operating steps, contamination and reagent concentrations. In order to comply with GAC recommendations, the aim of this work was to develop and optimize analytical strategies for complex samples preparation extracting with dilute reagents and assisted by ultrasound (USAE) and infrared (IRAE) radiations for multielemental determination by Microwave induced plasma atomic emission spectrometry (MIP OES). Likewise, a comparative analysis was carried out between the two procedures under their optimal conditions and on three different samples (animal feed, grapes and pork meat). The experimental optimization of each sample preparation system was carried out through a face centered central composite design (FC-CCD), assessing 4 and 5 factors for IRAE and USAE, respectively. Dissolved organic carbon (DOC), residual acidity (RA) and solid residue (SR) were evaluated as responses employing desirability function. Thus, response surface methodology was implemented to find the best combination of mass, diluted reagents (HNO3 and H2O2), time and temperature in order to minimize the studied responses for elemental extraction in analyzed samples. The selected factors were evaluated in a range of 100-500 mg (sample mass), 15-45 min (heating time), 2-7 M (HNO3 concentration) and 10-30 % (H2O2 concentration) for both designs and the temperature between 30-60°C was considered in the USAE design while for the IRAE it was kept constant at 190°C. The comparison between both methodologies revealed a better performance of IRAE than USAE for the parameters studied, achieving lower values for DOC, RA and SR, which are statistically significant for the1772three samples under study. On the other hand, different optimal conditions were acquired for the different samples, evidencing that the sample preparation also depends on the sample under study. For this reason, after their experimental validation, the optimal combinations of IRAE design for each sample were selected to elucidate sample composition through multielemental analysis. Acquired results were in accordance with guidelines values.
publishDate 2023
dc.date.none.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Congreso
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/243874
A comparative approach of simple green sample preparation methods based on optimization strategies for nutrient analysis of food; VIII Congreso Internacional de Ciencia y Tecnología de los Alimentos; Cordoba; Argentina; 2022; 1771-1771
CONICET Digital
CONICET
url http://hdl.handle.net/11336/243874
identifier_str_mv A comparative approach of simple green sample preparation methods based on optimization strategies for nutrient analysis of food; VIII Congreso Internacional de Ciencia y Tecnología de los Alimentos; Cordoba; Argentina; 2022; 1771-1771
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://cicytac.cba.gov.ar/
info:eu-repo/semantics/altIdentifier/url/https://cicytac.cba.gov.ar/ediciones-anteriores/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Ministerio de Ciencia y Tecnología
publisher.none.fl_str_mv Ministerio de Ciencia y Tecnología
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614401295908864
score 13.070432