Neural network-based state estimation for a closed-loop control strategy applied to a fed-batch bioreactor
- Autores
- Rómoli, Santiago; Serrano, Mario Emanuel; Rossomando, Francisco Guido; Vega, Jorge Ruben; Ortiz, Oscar; Scaglia, Gustavo Juan Eduardo
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The lack of online information on some bioprocess variables and the presence of model and parametric uncertainties pose significant challenges to the design of efficient closed-loop control strategies. To address this issue, this work proposes an online state estimator based on a Radial Basis Function (RBF) neural network that operates in closed loop together with a control law derived on a linear algebra-based design strategy. The proposed methodology is applied to a class of nonlinear systems with three types of uncertainties: (i) time-varying parameters, (ii) uncertain nonlinearities, and (iii) unmodeled dynamics. To reduce the effect of uncertainties on the bioreactor, some integrators of the tracking error are introduced, which in turn allow the derivation of the proper control actions. This new control scheme guarantees that all signals are uniformly and ultimately bounded, and the tracking error converges to small values. The effectiveness of the proposed approach is illustrated on the basis of simulated experiments on a fed-batch bioreactor, and its performance is compared with two controllers available in the literature.
Fil: Rómoli, Santiago. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Serrano, Mario Emanuel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Vega, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Ortiz, Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina
Fil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Neural Network Estimator
Control System Design
Linear Algebra
Integral Action - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/85192
Ver los metadatos del registro completo
id |
CONICETDig_71121df8b8e200a747ef91355dd0823e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/85192 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Neural network-based state estimation for a closed-loop control strategy applied to a fed-batch bioreactorRómoli, SantiagoSerrano, Mario EmanuelRossomando, Francisco GuidoVega, Jorge RubenOrtiz, OscarScaglia, Gustavo Juan EduardoNeural Network EstimatorControl System DesignLinear AlgebraIntegral Actionhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The lack of online information on some bioprocess variables and the presence of model and parametric uncertainties pose significant challenges to the design of efficient closed-loop control strategies. To address this issue, this work proposes an online state estimator based on a Radial Basis Function (RBF) neural network that operates in closed loop together with a control law derived on a linear algebra-based design strategy. The proposed methodology is applied to a class of nonlinear systems with three types of uncertainties: (i) time-varying parameters, (ii) uncertain nonlinearities, and (iii) unmodeled dynamics. To reduce the effect of uncertainties on the bioreactor, some integrators of the tracking error are introduced, which in turn allow the derivation of the proper control actions. This new control scheme guarantees that all signals are uniformly and ultimately bounded, and the tracking error converges to small values. The effectiveness of the proposed approach is illustrated on the basis of simulated experiments on a fed-batch bioreactor, and its performance is compared with two controllers available in the literature.Fil: Rómoli, Santiago. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Serrano, Mario Emanuel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Vega, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Ortiz, Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; ArgentinaFil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaHindawi Publishing Corporation2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85192Rómoli, Santiago; Serrano, Mario Emanuel; Rossomando, Francisco Guido; Vega, Jorge Ruben; Ortiz, Oscar; et al.; Neural network-based state estimation for a closed-loop control strategy applied to a fed-batch bioreactor; Hindawi Publishing Corporation; Complexity; 2017; 7-2017; 1-16; 93918791076-27871099-0526CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1155/2017/9391879info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/complexity/2017/9391879/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:09:13Zoai:ri.conicet.gov.ar:11336/85192instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:09:14.297CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Neural network-based state estimation for a closed-loop control strategy applied to a fed-batch bioreactor |
title |
Neural network-based state estimation for a closed-loop control strategy applied to a fed-batch bioreactor |
spellingShingle |
Neural network-based state estimation for a closed-loop control strategy applied to a fed-batch bioreactor Rómoli, Santiago Neural Network Estimator Control System Design Linear Algebra Integral Action |
title_short |
Neural network-based state estimation for a closed-loop control strategy applied to a fed-batch bioreactor |
title_full |
Neural network-based state estimation for a closed-loop control strategy applied to a fed-batch bioreactor |
title_fullStr |
Neural network-based state estimation for a closed-loop control strategy applied to a fed-batch bioreactor |
title_full_unstemmed |
Neural network-based state estimation for a closed-loop control strategy applied to a fed-batch bioreactor |
title_sort |
Neural network-based state estimation for a closed-loop control strategy applied to a fed-batch bioreactor |
dc.creator.none.fl_str_mv |
Rómoli, Santiago Serrano, Mario Emanuel Rossomando, Francisco Guido Vega, Jorge Ruben Ortiz, Oscar Scaglia, Gustavo Juan Eduardo |
author |
Rómoli, Santiago |
author_facet |
Rómoli, Santiago Serrano, Mario Emanuel Rossomando, Francisco Guido Vega, Jorge Ruben Ortiz, Oscar Scaglia, Gustavo Juan Eduardo |
author_role |
author |
author2 |
Serrano, Mario Emanuel Rossomando, Francisco Guido Vega, Jorge Ruben Ortiz, Oscar Scaglia, Gustavo Juan Eduardo |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Neural Network Estimator Control System Design Linear Algebra Integral Action |
topic |
Neural Network Estimator Control System Design Linear Algebra Integral Action |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The lack of online information on some bioprocess variables and the presence of model and parametric uncertainties pose significant challenges to the design of efficient closed-loop control strategies. To address this issue, this work proposes an online state estimator based on a Radial Basis Function (RBF) neural network that operates in closed loop together with a control law derived on a linear algebra-based design strategy. The proposed methodology is applied to a class of nonlinear systems with three types of uncertainties: (i) time-varying parameters, (ii) uncertain nonlinearities, and (iii) unmodeled dynamics. To reduce the effect of uncertainties on the bioreactor, some integrators of the tracking error are introduced, which in turn allow the derivation of the proper control actions. This new control scheme guarantees that all signals are uniformly and ultimately bounded, and the tracking error converges to small values. The effectiveness of the proposed approach is illustrated on the basis of simulated experiments on a fed-batch bioreactor, and its performance is compared with two controllers available in the literature. Fil: Rómoli, Santiago. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Serrano, Mario Emanuel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Vega, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Ortiz, Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina Fil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The lack of online information on some bioprocess variables and the presence of model and parametric uncertainties pose significant challenges to the design of efficient closed-loop control strategies. To address this issue, this work proposes an online state estimator based on a Radial Basis Function (RBF) neural network that operates in closed loop together with a control law derived on a linear algebra-based design strategy. The proposed methodology is applied to a class of nonlinear systems with three types of uncertainties: (i) time-varying parameters, (ii) uncertain nonlinearities, and (iii) unmodeled dynamics. To reduce the effect of uncertainties on the bioreactor, some integrators of the tracking error are introduced, which in turn allow the derivation of the proper control actions. This new control scheme guarantees that all signals are uniformly and ultimately bounded, and the tracking error converges to small values. The effectiveness of the proposed approach is illustrated on the basis of simulated experiments on a fed-batch bioreactor, and its performance is compared with two controllers available in the literature. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/85192 Rómoli, Santiago; Serrano, Mario Emanuel; Rossomando, Francisco Guido; Vega, Jorge Ruben; Ortiz, Oscar; et al.; Neural network-based state estimation for a closed-loop control strategy applied to a fed-batch bioreactor; Hindawi Publishing Corporation; Complexity; 2017; 7-2017; 1-16; 9391879 1076-2787 1099-0526 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/85192 |
identifier_str_mv |
Rómoli, Santiago; Serrano, Mario Emanuel; Rossomando, Francisco Guido; Vega, Jorge Ruben; Ortiz, Oscar; et al.; Neural network-based state estimation for a closed-loop control strategy applied to a fed-batch bioreactor; Hindawi Publishing Corporation; Complexity; 2017; 7-2017; 1-16; 9391879 1076-2787 1099-0526 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1155/2017/9391879 info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/complexity/2017/9391879/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606420334837760 |
score |
13.001348 |