Multivariable Control for Tracking Optimal Profiles in a Nonlinear Fed-Batch Bioprocess Integrated with State Estimation

Autores
Pantano, Maria Nadia; Serrano, Mario Emanuel; Fernández Puchol, María Cecilia; Rossomando, Francisco Guido; Ortiz, Oscar Alberto; Scaglia, Gustavo Juan Eduardo
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper aims to solve the problem of tracking optimal profiles for a nonlinear multivariable fed-batch bioprocess by a simple but efficient closed-loop control technique based on a linear algebra approach. In the proposed methodology, the control actions are obtained by solving a system of linear equations without the need for state transformations. The optimal profiles to follow are directly those corresponding to output desired variables, therefore, estimation of states for nonmeasurable variables is considered by employing a neural networks method. The efficiency of the proposed controller is tested through several simulations, including process disturbances and operation under parametric uncertainty. The optimal controller parameters are selected through the Montecarlo Randomized Algorithm. In addition, proof of convergence to zero of tracking errors is analyzed and included in this article.
Fil: Pantano, Maria Nadia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina
Fil: Serrano, Mario Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina
Fil: Fernández Puchol, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina
Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Ortiz, Oscar Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina
Fil: Scaglia, Gustavo Juan Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina
Materia
Bioprocess Control
Neural Nets
Neural Observer
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/66199

id CONICETDig_770b41e151b12be1d78d9c0a8969cde7
oai_identifier_str oai:ri.conicet.gov.ar:11336/66199
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Multivariable Control for Tracking Optimal Profiles in a Nonlinear Fed-Batch Bioprocess Integrated with State EstimationPantano, Maria NadiaSerrano, Mario EmanuelFernández Puchol, María CeciliaRossomando, Francisco GuidoOrtiz, Oscar AlbertoScaglia, Gustavo Juan EduardoBioprocess ControlNeural NetsNeural Observerhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2This paper aims to solve the problem of tracking optimal profiles for a nonlinear multivariable fed-batch bioprocess by a simple but efficient closed-loop control technique based on a linear algebra approach. In the proposed methodology, the control actions are obtained by solving a system of linear equations without the need for state transformations. The optimal profiles to follow are directly those corresponding to output desired variables, therefore, estimation of states for nonmeasurable variables is considered by employing a neural networks method. The efficiency of the proposed controller is tested through several simulations, including process disturbances and operation under parametric uncertainty. The optimal controller parameters are selected through the Montecarlo Randomized Algorithm. In addition, proof of convergence to zero of tracking errors is analyzed and included in this article.Fil: Pantano, Maria Nadia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; ArgentinaFil: Serrano, Mario Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; ArgentinaFil: Fernández Puchol, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; ArgentinaFil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Ortiz, Oscar Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; ArgentinaFil: Scaglia, Gustavo Juan Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; ArgentinaAmerican Chemical Society2017-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/66199Pantano, Maria Nadia; Serrano, Mario Emanuel; Fernández Puchol, María Cecilia; Rossomando, Francisco Guido; Ortiz, Oscar Alberto; et al.; Multivariable Control for Tracking Optimal Profiles in a Nonlinear Fed-Batch Bioprocess Integrated with State Estimation; American Chemical Society; Industrial & Engineering Chemical Research; 56; 20; 5-2017; 6043-60560888-5885CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acs.iecr.7b00831info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.iecr.7b00831info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:39Zoai:ri.conicet.gov.ar:11336/66199instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:39.559CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Multivariable Control for Tracking Optimal Profiles in a Nonlinear Fed-Batch Bioprocess Integrated with State Estimation
title Multivariable Control for Tracking Optimal Profiles in a Nonlinear Fed-Batch Bioprocess Integrated with State Estimation
spellingShingle Multivariable Control for Tracking Optimal Profiles in a Nonlinear Fed-Batch Bioprocess Integrated with State Estimation
Pantano, Maria Nadia
Bioprocess Control
Neural Nets
Neural Observer
title_short Multivariable Control for Tracking Optimal Profiles in a Nonlinear Fed-Batch Bioprocess Integrated with State Estimation
title_full Multivariable Control for Tracking Optimal Profiles in a Nonlinear Fed-Batch Bioprocess Integrated with State Estimation
title_fullStr Multivariable Control for Tracking Optimal Profiles in a Nonlinear Fed-Batch Bioprocess Integrated with State Estimation
title_full_unstemmed Multivariable Control for Tracking Optimal Profiles in a Nonlinear Fed-Batch Bioprocess Integrated with State Estimation
title_sort Multivariable Control for Tracking Optimal Profiles in a Nonlinear Fed-Batch Bioprocess Integrated with State Estimation
dc.creator.none.fl_str_mv Pantano, Maria Nadia
Serrano, Mario Emanuel
Fernández Puchol, María Cecilia
Rossomando, Francisco Guido
Ortiz, Oscar Alberto
Scaglia, Gustavo Juan Eduardo
author Pantano, Maria Nadia
author_facet Pantano, Maria Nadia
Serrano, Mario Emanuel
Fernández Puchol, María Cecilia
Rossomando, Francisco Guido
Ortiz, Oscar Alberto
Scaglia, Gustavo Juan Eduardo
author_role author
author2 Serrano, Mario Emanuel
Fernández Puchol, María Cecilia
Rossomando, Francisco Guido
Ortiz, Oscar Alberto
Scaglia, Gustavo Juan Eduardo
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Bioprocess Control
Neural Nets
Neural Observer
topic Bioprocess Control
Neural Nets
Neural Observer
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This paper aims to solve the problem of tracking optimal profiles for a nonlinear multivariable fed-batch bioprocess by a simple but efficient closed-loop control technique based on a linear algebra approach. In the proposed methodology, the control actions are obtained by solving a system of linear equations without the need for state transformations. The optimal profiles to follow are directly those corresponding to output desired variables, therefore, estimation of states for nonmeasurable variables is considered by employing a neural networks method. The efficiency of the proposed controller is tested through several simulations, including process disturbances and operation under parametric uncertainty. The optimal controller parameters are selected through the Montecarlo Randomized Algorithm. In addition, proof of convergence to zero of tracking errors is analyzed and included in this article.
Fil: Pantano, Maria Nadia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina
Fil: Serrano, Mario Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina
Fil: Fernández Puchol, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina
Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Ortiz, Oscar Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina
Fil: Scaglia, Gustavo Juan Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina
description This paper aims to solve the problem of tracking optimal profiles for a nonlinear multivariable fed-batch bioprocess by a simple but efficient closed-loop control technique based on a linear algebra approach. In the proposed methodology, the control actions are obtained by solving a system of linear equations without the need for state transformations. The optimal profiles to follow are directly those corresponding to output desired variables, therefore, estimation of states for nonmeasurable variables is considered by employing a neural networks method. The efficiency of the proposed controller is tested through several simulations, including process disturbances and operation under parametric uncertainty. The optimal controller parameters are selected through the Montecarlo Randomized Algorithm. In addition, proof of convergence to zero of tracking errors is analyzed and included in this article.
publishDate 2017
dc.date.none.fl_str_mv 2017-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/66199
Pantano, Maria Nadia; Serrano, Mario Emanuel; Fernández Puchol, María Cecilia; Rossomando, Francisco Guido; Ortiz, Oscar Alberto; et al.; Multivariable Control for Tracking Optimal Profiles in a Nonlinear Fed-Batch Bioprocess Integrated with State Estimation; American Chemical Society; Industrial & Engineering Chemical Research; 56; 20; 5-2017; 6043-6056
0888-5885
CONICET Digital
CONICET
url http://hdl.handle.net/11336/66199
identifier_str_mv Pantano, Maria Nadia; Serrano, Mario Emanuel; Fernández Puchol, María Cecilia; Rossomando, Francisco Guido; Ortiz, Oscar Alberto; et al.; Multivariable Control for Tracking Optimal Profiles in a Nonlinear Fed-Batch Bioprocess Integrated with State Estimation; American Chemical Society; Industrial & Engineering Chemical Research; 56; 20; 5-2017; 6043-6056
0888-5885
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.iecr.7b00831
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.iecr.7b00831
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613254641352704
score 13.070432