Abelian balanced Hermitian structures on unimodular Lie algebras
- Autores
- Andrada, Adrián Marcelo; Raquel Villacampa
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let g be a 2n-dimensional unimodular Lie algebra equipped with a Hermitian structure (J; F) such that the complex structure J is abelian and the fundamental form F is balanced. We prove that the holonomy group of the associated Bismut connection reduces to a subgroup of SU(n – k), being 2k the dimension of the center of g. We determine conditions that allow a unimodular Lie algebra to admit this particular type of structures. Moreover, we give methods to construct them in arbitrary dimensions and classify them if the Lie algebra is 8-dimensional and nilpotent.
Fil: Andrada, Adrián Marcelo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Raquel Villacampa. Centro Universitario de la Defensa; España - Materia
-
BISMUT CONNECTION
BALANCED HERMITIAN METRIC
ABELIAN COMPLEX STRUCTURE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59788
Ver los metadatos del registro completo
| id |
CONICETDig_6fdac0bb3b9fa509c8268512ad44fa53 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59788 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Abelian balanced Hermitian structures on unimodular Lie algebrasAndrada, Adrián MarceloRaquel VillacampaBISMUT CONNECTIONBALANCED HERMITIAN METRICABELIAN COMPLEX STRUCTUREhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let g be a 2n-dimensional unimodular Lie algebra equipped with a Hermitian structure (J; F) such that the complex structure J is abelian and the fundamental form F is balanced. We prove that the holonomy group of the associated Bismut connection reduces to a subgroup of SU(n – k), being 2k the dimension of the center of g. We determine conditions that allow a unimodular Lie algebra to admit this particular type of structures. Moreover, we give methods to construct them in arbitrary dimensions and classify them if the Lie algebra is 8-dimensional and nilpotent.Fil: Andrada, Adrián Marcelo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Raquel Villacampa. Centro Universitario de la Defensa; EspañaSpringer2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59788Andrada, Adrián Marcelo; Raquel Villacampa; Abelian balanced Hermitian structures on unimodular Lie algebras; Springer; Transformation Groups; 21; 4; 12-2016; 903-9271083-4362CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00031-015-9352-7info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00031-015-9352-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:20:17Zoai:ri.conicet.gov.ar:11336/59788instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:20:17.409CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Abelian balanced Hermitian structures on unimodular Lie algebras |
| title |
Abelian balanced Hermitian structures on unimodular Lie algebras |
| spellingShingle |
Abelian balanced Hermitian structures on unimodular Lie algebras Andrada, Adrián Marcelo BISMUT CONNECTION BALANCED HERMITIAN METRIC ABELIAN COMPLEX STRUCTURE |
| title_short |
Abelian balanced Hermitian structures on unimodular Lie algebras |
| title_full |
Abelian balanced Hermitian structures on unimodular Lie algebras |
| title_fullStr |
Abelian balanced Hermitian structures on unimodular Lie algebras |
| title_full_unstemmed |
Abelian balanced Hermitian structures on unimodular Lie algebras |
| title_sort |
Abelian balanced Hermitian structures on unimodular Lie algebras |
| dc.creator.none.fl_str_mv |
Andrada, Adrián Marcelo Raquel Villacampa |
| author |
Andrada, Adrián Marcelo |
| author_facet |
Andrada, Adrián Marcelo Raquel Villacampa |
| author_role |
author |
| author2 |
Raquel Villacampa |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
BISMUT CONNECTION BALANCED HERMITIAN METRIC ABELIAN COMPLEX STRUCTURE |
| topic |
BISMUT CONNECTION BALANCED HERMITIAN METRIC ABELIAN COMPLEX STRUCTURE |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let g be a 2n-dimensional unimodular Lie algebra equipped with a Hermitian structure (J; F) such that the complex structure J is abelian and the fundamental form F is balanced. We prove that the holonomy group of the associated Bismut connection reduces to a subgroup of SU(n – k), being 2k the dimension of the center of g. We determine conditions that allow a unimodular Lie algebra to admit this particular type of structures. Moreover, we give methods to construct them in arbitrary dimensions and classify them if the Lie algebra is 8-dimensional and nilpotent. Fil: Andrada, Adrián Marcelo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Raquel Villacampa. Centro Universitario de la Defensa; España |
| description |
Let g be a 2n-dimensional unimodular Lie algebra equipped with a Hermitian structure (J; F) such that the complex structure J is abelian and the fundamental form F is balanced. We prove that the holonomy group of the associated Bismut connection reduces to a subgroup of SU(n – k), being 2k the dimension of the center of g. We determine conditions that allow a unimodular Lie algebra to admit this particular type of structures. Moreover, we give methods to construct them in arbitrary dimensions and classify them if the Lie algebra is 8-dimensional and nilpotent. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59788 Andrada, Adrián Marcelo; Raquel Villacampa; Abelian balanced Hermitian structures on unimodular Lie algebras; Springer; Transformation Groups; 21; 4; 12-2016; 903-927 1083-4362 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/59788 |
| identifier_str_mv |
Andrada, Adrián Marcelo; Raquel Villacampa; Abelian balanced Hermitian structures on unimodular Lie algebras; Springer; Transformation Groups; 21; 4; 12-2016; 903-927 1083-4362 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00031-015-9352-7 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00031-015-9352-7 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781691615510528 |
| score |
12.982451 |