NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data

Autores
Reynisson, Birkir; Alvarez, Bruno; Paul, Sinu; Peters, Bjoern; Nielsen, Morten
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Major histocompatibility complex (MHC) molecules are expressed on the cell surface, where they present peptides to T cells, which gives them a key role in the development of T-cell immune responses. MHC molecules come in two main variants: MHC Class I (MHC-I) and MHC Class II (MHC-II). MHC-I predominantly present peptides derived from intracellular proteins, whereas MHC-II predominantly presents peptides from extracellular proteins. In both cases, the binding between MHC and antigenic peptides is the most selective step in the antigen presentation pathway. Therefore, the prediction of peptide binding to MHC is a powerful utility to predict the possible specificity of a T-cell immune response. Commonly MHC binding prediction tools are trained on binding affinity or mass spectrometry-eluted ligands. Recent studies have however demonstrated how the integration of both data types can boost predictive performances. Inspired by this, we here present NetMHCpan-4.1 and NetMHCIIpan-4.0, two web servers created to predict binding between peptides and MHC-I and MHC-II, respectively. Both methods exploit tailored machine learning strategies to integrate different training data types, resulting in state-of-the-art performance and outperforming their competitors. The servers are available at http://www.cbs.dtu.dk/services/NetMHCpan-4.1/ and http://www.cbs.dtu.dk/services/NetMHCIIpan-4.0/.
Fil: Reynisson, Birkir. Technical University of Denmark; Dinamarca
Fil: Alvarez, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unidos. University of California at San Diego; Estados Unidos
Fil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina. Technical University of Denmark; Dinamarca
Materia
MHC antigen presentation
Prediction
T cell
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/112506

id CONICETDig_e858128fab3070cc6bb858e4ccea72a5
oai_identifier_str oai:ri.conicet.gov.ar:11336/112506
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand dataReynisson, BirkirAlvarez, BrunoPaul, SinuPeters, BjoernNielsen, MortenMHC antigen presentationPredictionT cellhttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3Major histocompatibility complex (MHC) molecules are expressed on the cell surface, where they present peptides to T cells, which gives them a key role in the development of T-cell immune responses. MHC molecules come in two main variants: MHC Class I (MHC-I) and MHC Class II (MHC-II). MHC-I predominantly present peptides derived from intracellular proteins, whereas MHC-II predominantly presents peptides from extracellular proteins. In both cases, the binding between MHC and antigenic peptides is the most selective step in the antigen presentation pathway. Therefore, the prediction of peptide binding to MHC is a powerful utility to predict the possible specificity of a T-cell immune response. Commonly MHC binding prediction tools are trained on binding affinity or mass spectrometry-eluted ligands. Recent studies have however demonstrated how the integration of both data types can boost predictive performances. Inspired by this, we here present NetMHCpan-4.1 and NetMHCIIpan-4.0, two web servers created to predict binding between peptides and MHC-I and MHC-II, respectively. Both methods exploit tailored machine learning strategies to integrate different training data types, resulting in state-of-the-art performance and outperforming their competitors. The servers are available at http://www.cbs.dtu.dk/services/NetMHCpan-4.1/ and http://www.cbs.dtu.dk/services/NetMHCIIpan-4.0/.Fil: Reynisson, Birkir. Technical University of Denmark; DinamarcaFil: Alvarez, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unidos. University of California at San Diego; Estados UnidosFil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina. Technical University of Denmark; DinamarcaOxford University Press2020-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/112506Reynisson, Birkir; Alvarez, Bruno; Paul, Sinu; Peters, Bjoern; Nielsen, Morten; NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data; Oxford University Press; Nucleic Acids Research; 48; W1; 7-2020; W449-W4540305-10481362-4962CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkaa379/5837056info:eu-repo/semantics/altIdentifier/doi/10.1093/nar/gkaa379info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:37Zoai:ri.conicet.gov.ar:11336/112506instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:37.404CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data
title NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data
spellingShingle NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data
Reynisson, Birkir
MHC antigen presentation
Prediction
T cell
title_short NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data
title_full NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data
title_fullStr NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data
title_full_unstemmed NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data
title_sort NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data
dc.creator.none.fl_str_mv Reynisson, Birkir
Alvarez, Bruno
Paul, Sinu
Peters, Bjoern
Nielsen, Morten
author Reynisson, Birkir
author_facet Reynisson, Birkir
Alvarez, Bruno
Paul, Sinu
Peters, Bjoern
Nielsen, Morten
author_role author
author2 Alvarez, Bruno
Paul, Sinu
Peters, Bjoern
Nielsen, Morten
author2_role author
author
author
author
dc.subject.none.fl_str_mv MHC antigen presentation
Prediction
T cell
topic MHC antigen presentation
Prediction
T cell
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.3
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Major histocompatibility complex (MHC) molecules are expressed on the cell surface, where they present peptides to T cells, which gives them a key role in the development of T-cell immune responses. MHC molecules come in two main variants: MHC Class I (MHC-I) and MHC Class II (MHC-II). MHC-I predominantly present peptides derived from intracellular proteins, whereas MHC-II predominantly presents peptides from extracellular proteins. In both cases, the binding between MHC and antigenic peptides is the most selective step in the antigen presentation pathway. Therefore, the prediction of peptide binding to MHC is a powerful utility to predict the possible specificity of a T-cell immune response. Commonly MHC binding prediction tools are trained on binding affinity or mass spectrometry-eluted ligands. Recent studies have however demonstrated how the integration of both data types can boost predictive performances. Inspired by this, we here present NetMHCpan-4.1 and NetMHCIIpan-4.0, two web servers created to predict binding between peptides and MHC-I and MHC-II, respectively. Both methods exploit tailored machine learning strategies to integrate different training data types, resulting in state-of-the-art performance and outperforming their competitors. The servers are available at http://www.cbs.dtu.dk/services/NetMHCpan-4.1/ and http://www.cbs.dtu.dk/services/NetMHCIIpan-4.0/.
Fil: Reynisson, Birkir. Technical University of Denmark; Dinamarca
Fil: Alvarez, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unidos. University of California at San Diego; Estados Unidos
Fil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina. Technical University of Denmark; Dinamarca
description Major histocompatibility complex (MHC) molecules are expressed on the cell surface, where they present peptides to T cells, which gives them a key role in the development of T-cell immune responses. MHC molecules come in two main variants: MHC Class I (MHC-I) and MHC Class II (MHC-II). MHC-I predominantly present peptides derived from intracellular proteins, whereas MHC-II predominantly presents peptides from extracellular proteins. In both cases, the binding between MHC and antigenic peptides is the most selective step in the antigen presentation pathway. Therefore, the prediction of peptide binding to MHC is a powerful utility to predict the possible specificity of a T-cell immune response. Commonly MHC binding prediction tools are trained on binding affinity or mass spectrometry-eluted ligands. Recent studies have however demonstrated how the integration of both data types can boost predictive performances. Inspired by this, we here present NetMHCpan-4.1 and NetMHCIIpan-4.0, two web servers created to predict binding between peptides and MHC-I and MHC-II, respectively. Both methods exploit tailored machine learning strategies to integrate different training data types, resulting in state-of-the-art performance and outperforming their competitors. The servers are available at http://www.cbs.dtu.dk/services/NetMHCpan-4.1/ and http://www.cbs.dtu.dk/services/NetMHCIIpan-4.0/.
publishDate 2020
dc.date.none.fl_str_mv 2020-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/112506
Reynisson, Birkir; Alvarez, Bruno; Paul, Sinu; Peters, Bjoern; Nielsen, Morten; NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data; Oxford University Press; Nucleic Acids Research; 48; W1; 7-2020; W449-W454
0305-1048
1362-4962
CONICET Digital
CONICET
url http://hdl.handle.net/11336/112506
identifier_str_mv Reynisson, Birkir; Alvarez, Bruno; Paul, Sinu; Peters, Bjoern; Nielsen, Morten; NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data; Oxford University Press; Nucleic Acids Research; 48; W1; 7-2020; W449-W454
0305-1048
1362-4962
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkaa379/5837056
info:eu-repo/semantics/altIdentifier/doi/10.1093/nar/gkaa379
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269413400641536
score 13.13397