Equation of state modeling of the phase equilibria of asymmetric CO 2 + n-alkane binary systems using mixing rules cubic with respect to mole fraction

Autores
Cismondi Duarte, Martín; Mollerup, Jørgen M.; Zabaloy, Marcelo Santiago
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Both the equation of state (EOS) and the quadratic mixing rules proposed by van der Waals towards the end of the XIX century were enormous contributions to the understanding and modeling of fluids phase behavior. They set the basis for a consistent and useful representation of phase equilibria for a great diversity of mixtures. Nevertheless, the models for representing phase equilibria and physico-chemical properties of asymmetric systems may require more flexible mixing rules than the classical quadratic van der Waals (vdW) mixing rules or their equivalent (with regard to the number of available interaction parameters) in modern equations of state. In particular, the phase equilibria of binary mixtures containing CO2 and heavy n-alkanes have been studied by an important number of authors and using different types of models, achieving only partially accurate results and realizing the difficulties that these systems showing type III phase behavior (from C14 on) present for predicting or even correlating their phase equilibrium data in wide ranges of temperature and pressure. Cubic mixing rules (CMRs), implemented as a natural extension of the classical quadratic mixing rules, constitute the simplest alternative among different flexible approaches. In addition, they have the advantage of allowing correlation of multicomponent data by fitting ternary interaction parameters, while leaving invariant the description of the constituent binary systems. In this work, and after having detected the need for temperature-dependent interaction parameters in a previous study, we implemented an automated parameterization procedure based on characteristic key-points for binary systems showing type III phase behavior. Using the RK-PR EoS coupled to CMRs we present the parameters obtained and results showing for the first time a quite successful complete description of asymmetric CO 2 + n-alkane binary systems, with n-alkane carbon number from 14 to 22. © 2010 Elsevier B.V. © 2010 Elsevier B.V. All rights reserved.
Fil: Cismondi Duarte, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (I). Grupo Vinculado al Plapiqui - Investigación y Desarrollo en Tecnología Química; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. IVC-SEP; Dinamarca
Fil: Mollerup, Jørgen M.. Prepchrom; Dinamarca
Fil: Zabaloy, Marcelo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Materia
Asymmetric Systems
Composition Dependence
Critical Lines
Cubic Mixing Rules
Equations of State
High Pressure
Interaction Parameters
Llve
Objective Function
Type Iii Phase Behavior
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/67651

id CONICETDig_e7aee2e8c9c4083a012439e96af58ade
oai_identifier_str oai:ri.conicet.gov.ar:11336/67651
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Equation of state modeling of the phase equilibria of asymmetric CO 2 + n-alkane binary systems using mixing rules cubic with respect to mole fractionCismondi Duarte, MartínMollerup, Jørgen M.Zabaloy, Marcelo SantiagoAsymmetric SystemsComposition DependenceCritical LinesCubic Mixing RulesEquations of StateHigh PressureInteraction ParametersLlveObjective FunctionType Iii Phase Behaviorhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Both the equation of state (EOS) and the quadratic mixing rules proposed by van der Waals towards the end of the XIX century were enormous contributions to the understanding and modeling of fluids phase behavior. They set the basis for a consistent and useful representation of phase equilibria for a great diversity of mixtures. Nevertheless, the models for representing phase equilibria and physico-chemical properties of asymmetric systems may require more flexible mixing rules than the classical quadratic van der Waals (vdW) mixing rules or their equivalent (with regard to the number of available interaction parameters) in modern equations of state. In particular, the phase equilibria of binary mixtures containing CO2 and heavy n-alkanes have been studied by an important number of authors and using different types of models, achieving only partially accurate results and realizing the difficulties that these systems showing type III phase behavior (from C14 on) present for predicting or even correlating their phase equilibrium data in wide ranges of temperature and pressure. Cubic mixing rules (CMRs), implemented as a natural extension of the classical quadratic mixing rules, constitute the simplest alternative among different flexible approaches. In addition, they have the advantage of allowing correlation of multicomponent data by fitting ternary interaction parameters, while leaving invariant the description of the constituent binary systems. In this work, and after having detected the need for temperature-dependent interaction parameters in a previous study, we implemented an automated parameterization procedure based on characteristic key-points for binary systems showing type III phase behavior. Using the RK-PR EoS coupled to CMRs we present the parameters obtained and results showing for the first time a quite successful complete description of asymmetric CO 2 + n-alkane binary systems, with n-alkane carbon number from 14 to 22. © 2010 Elsevier B.V. © 2010 Elsevier B.V. All rights reserved.Fil: Cismondi Duarte, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (I). Grupo Vinculado al Plapiqui - Investigación y Desarrollo en Tecnología Química; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. IVC-SEP; DinamarcaFil: Mollerup, Jørgen M.. Prepchrom; DinamarcaFil: Zabaloy, Marcelo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaElsevier Science2010-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67651Cismondi Duarte, Martín; Mollerup, Jørgen M.; Zabaloy, Marcelo Santiago; Equation of state modeling of the phase equilibria of asymmetric CO 2 + n-alkane binary systems using mixing rules cubic with respect to mole fraction; Elsevier Science; Journal of Supercritical Fluids; 55; 2; 12-2010; 671-6810896-8446CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.supflu.2010.10.007info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0896844610003426info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:09:35Zoai:ri.conicet.gov.ar:11336/67651instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:09:36.265CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Equation of state modeling of the phase equilibria of asymmetric CO 2 + n-alkane binary systems using mixing rules cubic with respect to mole fraction
title Equation of state modeling of the phase equilibria of asymmetric CO 2 + n-alkane binary systems using mixing rules cubic with respect to mole fraction
spellingShingle Equation of state modeling of the phase equilibria of asymmetric CO 2 + n-alkane binary systems using mixing rules cubic with respect to mole fraction
Cismondi Duarte, Martín
Asymmetric Systems
Composition Dependence
Critical Lines
Cubic Mixing Rules
Equations of State
High Pressure
Interaction Parameters
Llve
Objective Function
Type Iii Phase Behavior
title_short Equation of state modeling of the phase equilibria of asymmetric CO 2 + n-alkane binary systems using mixing rules cubic with respect to mole fraction
title_full Equation of state modeling of the phase equilibria of asymmetric CO 2 + n-alkane binary systems using mixing rules cubic with respect to mole fraction
title_fullStr Equation of state modeling of the phase equilibria of asymmetric CO 2 + n-alkane binary systems using mixing rules cubic with respect to mole fraction
title_full_unstemmed Equation of state modeling of the phase equilibria of asymmetric CO 2 + n-alkane binary systems using mixing rules cubic with respect to mole fraction
title_sort Equation of state modeling of the phase equilibria of asymmetric CO 2 + n-alkane binary systems using mixing rules cubic with respect to mole fraction
dc.creator.none.fl_str_mv Cismondi Duarte, Martín
Mollerup, Jørgen M.
Zabaloy, Marcelo Santiago
author Cismondi Duarte, Martín
author_facet Cismondi Duarte, Martín
Mollerup, Jørgen M.
Zabaloy, Marcelo Santiago
author_role author
author2 Mollerup, Jørgen M.
Zabaloy, Marcelo Santiago
author2_role author
author
dc.subject.none.fl_str_mv Asymmetric Systems
Composition Dependence
Critical Lines
Cubic Mixing Rules
Equations of State
High Pressure
Interaction Parameters
Llve
Objective Function
Type Iii Phase Behavior
topic Asymmetric Systems
Composition Dependence
Critical Lines
Cubic Mixing Rules
Equations of State
High Pressure
Interaction Parameters
Llve
Objective Function
Type Iii Phase Behavior
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Both the equation of state (EOS) and the quadratic mixing rules proposed by van der Waals towards the end of the XIX century were enormous contributions to the understanding and modeling of fluids phase behavior. They set the basis for a consistent and useful representation of phase equilibria for a great diversity of mixtures. Nevertheless, the models for representing phase equilibria and physico-chemical properties of asymmetric systems may require more flexible mixing rules than the classical quadratic van der Waals (vdW) mixing rules or their equivalent (with regard to the number of available interaction parameters) in modern equations of state. In particular, the phase equilibria of binary mixtures containing CO2 and heavy n-alkanes have been studied by an important number of authors and using different types of models, achieving only partially accurate results and realizing the difficulties that these systems showing type III phase behavior (from C14 on) present for predicting or even correlating their phase equilibrium data in wide ranges of temperature and pressure. Cubic mixing rules (CMRs), implemented as a natural extension of the classical quadratic mixing rules, constitute the simplest alternative among different flexible approaches. In addition, they have the advantage of allowing correlation of multicomponent data by fitting ternary interaction parameters, while leaving invariant the description of the constituent binary systems. In this work, and after having detected the need for temperature-dependent interaction parameters in a previous study, we implemented an automated parameterization procedure based on characteristic key-points for binary systems showing type III phase behavior. Using the RK-PR EoS coupled to CMRs we present the parameters obtained and results showing for the first time a quite successful complete description of asymmetric CO 2 + n-alkane binary systems, with n-alkane carbon number from 14 to 22. © 2010 Elsevier B.V. © 2010 Elsevier B.V. All rights reserved.
Fil: Cismondi Duarte, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (I). Grupo Vinculado al Plapiqui - Investigación y Desarrollo en Tecnología Química; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. IVC-SEP; Dinamarca
Fil: Mollerup, Jørgen M.. Prepchrom; Dinamarca
Fil: Zabaloy, Marcelo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
description Both the equation of state (EOS) and the quadratic mixing rules proposed by van der Waals towards the end of the XIX century were enormous contributions to the understanding and modeling of fluids phase behavior. They set the basis for a consistent and useful representation of phase equilibria for a great diversity of mixtures. Nevertheless, the models for representing phase equilibria and physico-chemical properties of asymmetric systems may require more flexible mixing rules than the classical quadratic van der Waals (vdW) mixing rules or their equivalent (with regard to the number of available interaction parameters) in modern equations of state. In particular, the phase equilibria of binary mixtures containing CO2 and heavy n-alkanes have been studied by an important number of authors and using different types of models, achieving only partially accurate results and realizing the difficulties that these systems showing type III phase behavior (from C14 on) present for predicting or even correlating their phase equilibrium data in wide ranges of temperature and pressure. Cubic mixing rules (CMRs), implemented as a natural extension of the classical quadratic mixing rules, constitute the simplest alternative among different flexible approaches. In addition, they have the advantage of allowing correlation of multicomponent data by fitting ternary interaction parameters, while leaving invariant the description of the constituent binary systems. In this work, and after having detected the need for temperature-dependent interaction parameters in a previous study, we implemented an automated parameterization procedure based on characteristic key-points for binary systems showing type III phase behavior. Using the RK-PR EoS coupled to CMRs we present the parameters obtained and results showing for the first time a quite successful complete description of asymmetric CO 2 + n-alkane binary systems, with n-alkane carbon number from 14 to 22. © 2010 Elsevier B.V. © 2010 Elsevier B.V. All rights reserved.
publishDate 2010
dc.date.none.fl_str_mv 2010-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/67651
Cismondi Duarte, Martín; Mollerup, Jørgen M.; Zabaloy, Marcelo Santiago; Equation of state modeling of the phase equilibria of asymmetric CO 2 + n-alkane binary systems using mixing rules cubic with respect to mole fraction; Elsevier Science; Journal of Supercritical Fluids; 55; 2; 12-2010; 671-681
0896-8446
CONICET Digital
CONICET
url http://hdl.handle.net/11336/67651
identifier_str_mv Cismondi Duarte, Martín; Mollerup, Jørgen M.; Zabaloy, Marcelo Santiago; Equation of state modeling of the phase equilibria of asymmetric CO 2 + n-alkane binary systems using mixing rules cubic with respect to mole fraction; Elsevier Science; Journal of Supercritical Fluids; 55; 2; 12-2010; 671-681
0896-8446
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.supflu.2010.10.007
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0896844610003426
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613976380407808
score 13.070432