Gaussian ensembles distributions from mixing quantum systems

Autores
Gomez, Ignacio Sebastián; Portesi, Mariela Adelina
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the context of dynamical systems we present a derivation of the Gaussian ensembles distributions from quantum systems having a classical analogue that is mixing. We find that factorization property is satisfied for the mixing quantum systems expressed as a factorization of quantum mean values. For the case of the kicked rotator and in its fully chaotic regime, the factorization property links decoherence by dephasing with Gaussian ensembles in terms of the weak limit, interpreted as a decohered state. Moreover, a discussion about the connection between random matrix theory and quantum chaotic systems, based on some attempts made in previous works and from the viewpoint of the mixing quantum systems, is presented.
Fil: Gomez, Ignacio Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Portesi, Mariela Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Materia
Gaussian Ensembles
Mixing
Quantum Mixing
Weak Limit
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/63961

id CONICETDig_44afb348ee2f7a383d102012da261fcb
oai_identifier_str oai:ri.conicet.gov.ar:11336/63961
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Gaussian ensembles distributions from mixing quantum systemsGomez, Ignacio SebastiánPortesi, Mariela AdelinaGaussian EnsemblesMixingQuantum MixingWeak Limithttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In the context of dynamical systems we present a derivation of the Gaussian ensembles distributions from quantum systems having a classical analogue that is mixing. We find that factorization property is satisfied for the mixing quantum systems expressed as a factorization of quantum mean values. For the case of the kicked rotator and in its fully chaotic regime, the factorization property links decoherence by dephasing with Gaussian ensembles in terms of the weak limit, interpreted as a decohered state. Moreover, a discussion about the connection between random matrix theory and quantum chaotic systems, based on some attempts made in previous works and from the viewpoint of the mixing quantum systems, is presented.Fil: Gomez, Ignacio Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Portesi, Mariela Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaElsevier Science2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/63961Gomez, Ignacio Sebastián; Portesi, Mariela Adelina; Gaussian ensembles distributions from mixing quantum systems; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 479; 8-2017; 437-4480378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S037843711730225Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2017.03.005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:32Zoai:ri.conicet.gov.ar:11336/63961instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:32.307CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Gaussian ensembles distributions from mixing quantum systems
title Gaussian ensembles distributions from mixing quantum systems
spellingShingle Gaussian ensembles distributions from mixing quantum systems
Gomez, Ignacio Sebastián
Gaussian Ensembles
Mixing
Quantum Mixing
Weak Limit
title_short Gaussian ensembles distributions from mixing quantum systems
title_full Gaussian ensembles distributions from mixing quantum systems
title_fullStr Gaussian ensembles distributions from mixing quantum systems
title_full_unstemmed Gaussian ensembles distributions from mixing quantum systems
title_sort Gaussian ensembles distributions from mixing quantum systems
dc.creator.none.fl_str_mv Gomez, Ignacio Sebastián
Portesi, Mariela Adelina
author Gomez, Ignacio Sebastián
author_facet Gomez, Ignacio Sebastián
Portesi, Mariela Adelina
author_role author
author2 Portesi, Mariela Adelina
author2_role author
dc.subject.none.fl_str_mv Gaussian Ensembles
Mixing
Quantum Mixing
Weak Limit
topic Gaussian Ensembles
Mixing
Quantum Mixing
Weak Limit
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In the context of dynamical systems we present a derivation of the Gaussian ensembles distributions from quantum systems having a classical analogue that is mixing. We find that factorization property is satisfied for the mixing quantum systems expressed as a factorization of quantum mean values. For the case of the kicked rotator and in its fully chaotic regime, the factorization property links decoherence by dephasing with Gaussian ensembles in terms of the weak limit, interpreted as a decohered state. Moreover, a discussion about the connection between random matrix theory and quantum chaotic systems, based on some attempts made in previous works and from the viewpoint of the mixing quantum systems, is presented.
Fil: Gomez, Ignacio Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Portesi, Mariela Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
description In the context of dynamical systems we present a derivation of the Gaussian ensembles distributions from quantum systems having a classical analogue that is mixing. We find that factorization property is satisfied for the mixing quantum systems expressed as a factorization of quantum mean values. For the case of the kicked rotator and in its fully chaotic regime, the factorization property links decoherence by dephasing with Gaussian ensembles in terms of the weak limit, interpreted as a decohered state. Moreover, a discussion about the connection between random matrix theory and quantum chaotic systems, based on some attempts made in previous works and from the viewpoint of the mixing quantum systems, is presented.
publishDate 2017
dc.date.none.fl_str_mv 2017-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/63961
Gomez, Ignacio Sebastián; Portesi, Mariela Adelina; Gaussian ensembles distributions from mixing quantum systems; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 479; 8-2017; 437-448
0378-4371
CONICET Digital
CONICET
url http://hdl.handle.net/11336/63961
identifier_str_mv Gomez, Ignacio Sebastián; Portesi, Mariela Adelina; Gaussian ensembles distributions from mixing quantum systems; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 479; 8-2017; 437-448
0378-4371
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S037843711730225X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2017.03.005
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613146525827072
score 13.070432