Two alternative routes for starch consolidation of mullite green bodies
- Autores
- Talou, Mariano Hernán; Camerucci, Maria Andrea
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The starch consolidation forming method can be used in the manufacture of porous ceramics. In this method, based on swelling and gelatinization properties of starch in aqueous suspension at temperature (55-80°C), the starch granules perform as both consolidator/binder of the green body and pore former at high-temperature.Commercially available powders of mullite and cassava starch were employed as raw materials. Mullite/starch aqueous suspensions (0.25 starch volume fraction of 40. vol.% total solid loading) were prepared by intensive mechanical mixing and homogenization in a ball mill.Two alternative forming routes of thermogelling mullite/starch aqueous suspensions-the Conventional Route (CR) and the Pre-Gelling Route (PGR)-were studied. With the CR, disks were formed by pouring the mullite/starch suspension at room temperature directly into metallic molds and heating at different temperatures (70 and 80°C) and times (1 and 2h). With the PGR, disks were shaped by pouring pre-gelled mullite/starch suspensions at 59°C into heated molds and heating at the same experimental conditions. Once the consolidation process was finished, samples were removed of the mold and dried. Green bodies shaped by the two processing routes and obtained before (CRbb and PGRbb) and after (CRab and PGRab) burning out the starch, were characterized by bulk density and apparent porosity measurements and microstructural analysis by SEM/EDAX on the external and fracture surfaces. The homogeneity of the distribution of raw materials and pores, and the volume porosity were taken into account to establish the optimum consolidation conditions to be used in the preparation of mullite porous materials with homogeneous microstructures.
Fil: Talou, Mariano Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Camerucci, Maria Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina - Materia
-
B. Microstructure-Prefiring
D. Mullite
Starch Direct Consolidation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55891
Ver los metadatos del registro completo
id |
CONICETDig_6d68851066daa7ee4b97faa1e5d6003c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55891 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Two alternative routes for starch consolidation of mullite green bodiesTalou, Mariano HernánCamerucci, Maria AndreaB. Microstructure-PrefiringD. MulliteStarch Direct Consolidationhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2The starch consolidation forming method can be used in the manufacture of porous ceramics. In this method, based on swelling and gelatinization properties of starch in aqueous suspension at temperature (55-80°C), the starch granules perform as both consolidator/binder of the green body and pore former at high-temperature.Commercially available powders of mullite and cassava starch were employed as raw materials. Mullite/starch aqueous suspensions (0.25 starch volume fraction of 40. vol.% total solid loading) were prepared by intensive mechanical mixing and homogenization in a ball mill.Two alternative forming routes of thermogelling mullite/starch aqueous suspensions-the Conventional Route (CR) and the Pre-Gelling Route (PGR)-were studied. With the CR, disks were formed by pouring the mullite/starch suspension at room temperature directly into metallic molds and heating at different temperatures (70 and 80°C) and times (1 and 2h). With the PGR, disks were shaped by pouring pre-gelled mullite/starch suspensions at 59°C into heated molds and heating at the same experimental conditions. Once the consolidation process was finished, samples were removed of the mold and dried. Green bodies shaped by the two processing routes and obtained before (CRbb and PGRbb) and after (CRab and PGRab) burning out the starch, were characterized by bulk density and apparent porosity measurements and microstructural analysis by SEM/EDAX on the external and fracture surfaces. The homogeneity of the distribution of raw materials and pores, and the volume porosity were taken into account to establish the optimum consolidation conditions to be used in the preparation of mullite porous materials with homogeneous microstructures.Fil: Talou, Mariano Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Camerucci, Maria Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaElsevier2010-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55891Talou, Mariano Hernán; Camerucci, Maria Andrea; Two alternative routes for starch consolidation of mullite green bodies; Elsevier; Journal of the European Ceramic Society; 30; 14; 10-2010; 2881-28870955-2219CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jeurceramsoc.2010.06.001info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0955221910002797info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:33Zoai:ri.conicet.gov.ar:11336/55891instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:33.308CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Two alternative routes for starch consolidation of mullite green bodies |
title |
Two alternative routes for starch consolidation of mullite green bodies |
spellingShingle |
Two alternative routes for starch consolidation of mullite green bodies Talou, Mariano Hernán B. Microstructure-Prefiring D. Mullite Starch Direct Consolidation |
title_short |
Two alternative routes for starch consolidation of mullite green bodies |
title_full |
Two alternative routes for starch consolidation of mullite green bodies |
title_fullStr |
Two alternative routes for starch consolidation of mullite green bodies |
title_full_unstemmed |
Two alternative routes for starch consolidation of mullite green bodies |
title_sort |
Two alternative routes for starch consolidation of mullite green bodies |
dc.creator.none.fl_str_mv |
Talou, Mariano Hernán Camerucci, Maria Andrea |
author |
Talou, Mariano Hernán |
author_facet |
Talou, Mariano Hernán Camerucci, Maria Andrea |
author_role |
author |
author2 |
Camerucci, Maria Andrea |
author2_role |
author |
dc.subject.none.fl_str_mv |
B. Microstructure-Prefiring D. Mullite Starch Direct Consolidation |
topic |
B. Microstructure-Prefiring D. Mullite Starch Direct Consolidation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The starch consolidation forming method can be used in the manufacture of porous ceramics. In this method, based on swelling and gelatinization properties of starch in aqueous suspension at temperature (55-80°C), the starch granules perform as both consolidator/binder of the green body and pore former at high-temperature.Commercially available powders of mullite and cassava starch were employed as raw materials. Mullite/starch aqueous suspensions (0.25 starch volume fraction of 40. vol.% total solid loading) were prepared by intensive mechanical mixing and homogenization in a ball mill.Two alternative forming routes of thermogelling mullite/starch aqueous suspensions-the Conventional Route (CR) and the Pre-Gelling Route (PGR)-were studied. With the CR, disks were formed by pouring the mullite/starch suspension at room temperature directly into metallic molds and heating at different temperatures (70 and 80°C) and times (1 and 2h). With the PGR, disks were shaped by pouring pre-gelled mullite/starch suspensions at 59°C into heated molds and heating at the same experimental conditions. Once the consolidation process was finished, samples were removed of the mold and dried. Green bodies shaped by the two processing routes and obtained before (CRbb and PGRbb) and after (CRab and PGRab) burning out the starch, were characterized by bulk density and apparent porosity measurements and microstructural analysis by SEM/EDAX on the external and fracture surfaces. The homogeneity of the distribution of raw materials and pores, and the volume porosity were taken into account to establish the optimum consolidation conditions to be used in the preparation of mullite porous materials with homogeneous microstructures. Fil: Talou, Mariano Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Camerucci, Maria Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina |
description |
The starch consolidation forming method can be used in the manufacture of porous ceramics. In this method, based on swelling and gelatinization properties of starch in aqueous suspension at temperature (55-80°C), the starch granules perform as both consolidator/binder of the green body and pore former at high-temperature.Commercially available powders of mullite and cassava starch were employed as raw materials. Mullite/starch aqueous suspensions (0.25 starch volume fraction of 40. vol.% total solid loading) were prepared by intensive mechanical mixing and homogenization in a ball mill.Two alternative forming routes of thermogelling mullite/starch aqueous suspensions-the Conventional Route (CR) and the Pre-Gelling Route (PGR)-were studied. With the CR, disks were formed by pouring the mullite/starch suspension at room temperature directly into metallic molds and heating at different temperatures (70 and 80°C) and times (1 and 2h). With the PGR, disks were shaped by pouring pre-gelled mullite/starch suspensions at 59°C into heated molds and heating at the same experimental conditions. Once the consolidation process was finished, samples were removed of the mold and dried. Green bodies shaped by the two processing routes and obtained before (CRbb and PGRbb) and after (CRab and PGRab) burning out the starch, were characterized by bulk density and apparent porosity measurements and microstructural analysis by SEM/EDAX on the external and fracture surfaces. The homogeneity of the distribution of raw materials and pores, and the volume porosity were taken into account to establish the optimum consolidation conditions to be used in the preparation of mullite porous materials with homogeneous microstructures. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55891 Talou, Mariano Hernán; Camerucci, Maria Andrea; Two alternative routes for starch consolidation of mullite green bodies; Elsevier; Journal of the European Ceramic Society; 30; 14; 10-2010; 2881-2887 0955-2219 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55891 |
identifier_str_mv |
Talou, Mariano Hernán; Camerucci, Maria Andrea; Two alternative routes for starch consolidation of mullite green bodies; Elsevier; Journal of the European Ceramic Society; 30; 14; 10-2010; 2881-2887 0955-2219 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jeurceramsoc.2010.06.001 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0955221910002797 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614148690804736 |
score |
13.070432 |