Anomaly guided segmentation: Introducing semantic context for lesion segmentation in retinal OCT using weak context supervision from anomaly detection
- Autores
- Seeböck, Philipp; Orlando, José Ignacio; Michl, Martin; Mai, Julia; Schmidt Erfurth, Ursula; Bogunovic, Hrvoje
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Automated lesion detection in retinal optical coherence tomography (OCT) scans has shown promise for several clinical applications, including diagnosis, monitoring and guidance of treatment decisions. However, segmentation models still struggle to achieve the desired results for some complex lesions or datasets that commonly occur in real-world, e.g. due to variability of lesion phenotypes, image quality or disease appearance. While several techniques have been proposed to improve them, one line of research that has not yet been investigated is the incorporation of additional semantic context through the application of anomaly detection models. In this study we experimentally show that incorporating weak anomaly labels to standard segmentation models consistently improves lesion segmentation results. This can be done relatively easy by detecting anomalies with a separate model and then adding these output masks as an extra class for training the segmentation model. This provides additional semantic context without requiring extra manual labels. We empirically validated this strategy using two in-house and two publicly available retinal OCT datasets for multiple lesion targets, demonstrating the potential of this generic anomaly guided segmentation approach to be used as an extra tool for improving lesion detection models.
Fil: Seeböck, Philipp. Vienna University of Technology; Austria
Fil: Orlando, José Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: Michl, Martin. Vienna University of Technology; Austria
Fil: Mai, Julia. Vienna University of Technology; Austria
Fil: Schmidt Erfurth, Ursula. Vienna University of Technology; Austria
Fil: Bogunovic, Hrvoje. Vienna University of Technology; Austria - Materia
-
deep learning
segmetnation
anomaly detection
semantic context - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/231279
Ver los metadatos del registro completo
id |
CONICETDig_b56e9e55fc8fe58480a57ad0898156cd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/231279 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Anomaly guided segmentation: Introducing semantic context for lesion segmentation in retinal OCT using weak context supervision from anomaly detectionSeeböck, PhilippOrlando, José IgnacioMichl, MartinMai, JuliaSchmidt Erfurth, UrsulaBogunovic, Hrvojedeep learningsegmetnationanomaly detectionsemantic contexthttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Automated lesion detection in retinal optical coherence tomography (OCT) scans has shown promise for several clinical applications, including diagnosis, monitoring and guidance of treatment decisions. However, segmentation models still struggle to achieve the desired results for some complex lesions or datasets that commonly occur in real-world, e.g. due to variability of lesion phenotypes, image quality or disease appearance. While several techniques have been proposed to improve them, one line of research that has not yet been investigated is the incorporation of additional semantic context through the application of anomaly detection models. In this study we experimentally show that incorporating weak anomaly labels to standard segmentation models consistently improves lesion segmentation results. This can be done relatively easy by detecting anomalies with a separate model and then adding these output masks as an extra class for training the segmentation model. This provides additional semantic context without requiring extra manual labels. We empirically validated this strategy using two in-house and two publicly available retinal OCT datasets for multiple lesion targets, demonstrating the potential of this generic anomaly guided segmentation approach to be used as an extra tool for improving lesion detection models.Fil: Seeböck, Philipp. Vienna University of Technology; AustriaFil: Orlando, José Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaFil: Michl, Martin. Vienna University of Technology; AustriaFil: Mai, Julia. Vienna University of Technology; AustriaFil: Schmidt Erfurth, Ursula. Vienna University of Technology; AustriaFil: Bogunovic, Hrvoje. Vienna University of Technology; AustriaElsevier Science2024-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/231279Seeböck, Philipp; Orlando, José Ignacio; Michl, Martin; Mai, Julia; Schmidt Erfurth, Ursula; et al.; Anomaly guided segmentation: Introducing semantic context for lesion segmentation in retinal OCT using weak context supervision from anomaly detection; Elsevier Science; Medical Image Analysis; 93; 4-2024; 1-151361-84151361-8423CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S136184152400029Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.media.2024.103104info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:39Zoai:ri.conicet.gov.ar:11336/231279instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:39.691CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Anomaly guided segmentation: Introducing semantic context for lesion segmentation in retinal OCT using weak context supervision from anomaly detection |
title |
Anomaly guided segmentation: Introducing semantic context for lesion segmentation in retinal OCT using weak context supervision from anomaly detection |
spellingShingle |
Anomaly guided segmentation: Introducing semantic context for lesion segmentation in retinal OCT using weak context supervision from anomaly detection Seeböck, Philipp deep learning segmetnation anomaly detection semantic context |
title_short |
Anomaly guided segmentation: Introducing semantic context for lesion segmentation in retinal OCT using weak context supervision from anomaly detection |
title_full |
Anomaly guided segmentation: Introducing semantic context for lesion segmentation in retinal OCT using weak context supervision from anomaly detection |
title_fullStr |
Anomaly guided segmentation: Introducing semantic context for lesion segmentation in retinal OCT using weak context supervision from anomaly detection |
title_full_unstemmed |
Anomaly guided segmentation: Introducing semantic context for lesion segmentation in retinal OCT using weak context supervision from anomaly detection |
title_sort |
Anomaly guided segmentation: Introducing semantic context for lesion segmentation in retinal OCT using weak context supervision from anomaly detection |
dc.creator.none.fl_str_mv |
Seeböck, Philipp Orlando, José Ignacio Michl, Martin Mai, Julia Schmidt Erfurth, Ursula Bogunovic, Hrvoje |
author |
Seeböck, Philipp |
author_facet |
Seeböck, Philipp Orlando, José Ignacio Michl, Martin Mai, Julia Schmidt Erfurth, Ursula Bogunovic, Hrvoje |
author_role |
author |
author2 |
Orlando, José Ignacio Michl, Martin Mai, Julia Schmidt Erfurth, Ursula Bogunovic, Hrvoje |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
deep learning segmetnation anomaly detection semantic context |
topic |
deep learning segmetnation anomaly detection semantic context |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Automated lesion detection in retinal optical coherence tomography (OCT) scans has shown promise for several clinical applications, including diagnosis, monitoring and guidance of treatment decisions. However, segmentation models still struggle to achieve the desired results for some complex lesions or datasets that commonly occur in real-world, e.g. due to variability of lesion phenotypes, image quality or disease appearance. While several techniques have been proposed to improve them, one line of research that has not yet been investigated is the incorporation of additional semantic context through the application of anomaly detection models. In this study we experimentally show that incorporating weak anomaly labels to standard segmentation models consistently improves lesion segmentation results. This can be done relatively easy by detecting anomalies with a separate model and then adding these output masks as an extra class for training the segmentation model. This provides additional semantic context without requiring extra manual labels. We empirically validated this strategy using two in-house and two publicly available retinal OCT datasets for multiple lesion targets, demonstrating the potential of this generic anomaly guided segmentation approach to be used as an extra tool for improving lesion detection models. Fil: Seeböck, Philipp. Vienna University of Technology; Austria Fil: Orlando, José Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina Fil: Michl, Martin. Vienna University of Technology; Austria Fil: Mai, Julia. Vienna University of Technology; Austria Fil: Schmidt Erfurth, Ursula. Vienna University of Technology; Austria Fil: Bogunovic, Hrvoje. Vienna University of Technology; Austria |
description |
Automated lesion detection in retinal optical coherence tomography (OCT) scans has shown promise for several clinical applications, including diagnosis, monitoring and guidance of treatment decisions. However, segmentation models still struggle to achieve the desired results for some complex lesions or datasets that commonly occur in real-world, e.g. due to variability of lesion phenotypes, image quality or disease appearance. While several techniques have been proposed to improve them, one line of research that has not yet been investigated is the incorporation of additional semantic context through the application of anomaly detection models. In this study we experimentally show that incorporating weak anomaly labels to standard segmentation models consistently improves lesion segmentation results. This can be done relatively easy by detecting anomalies with a separate model and then adding these output masks as an extra class for training the segmentation model. This provides additional semantic context without requiring extra manual labels. We empirically validated this strategy using two in-house and two publicly available retinal OCT datasets for multiple lesion targets, demonstrating the potential of this generic anomaly guided segmentation approach to be used as an extra tool for improving lesion detection models. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/231279 Seeböck, Philipp; Orlando, José Ignacio; Michl, Martin; Mai, Julia; Schmidt Erfurth, Ursula; et al.; Anomaly guided segmentation: Introducing semantic context for lesion segmentation in retinal OCT using weak context supervision from anomaly detection; Elsevier Science; Medical Image Analysis; 93; 4-2024; 1-15 1361-8415 1361-8423 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/231279 |
identifier_str_mv |
Seeböck, Philipp; Orlando, José Ignacio; Michl, Martin; Mai, Julia; Schmidt Erfurth, Ursula; et al.; Anomaly guided segmentation: Introducing semantic context for lesion segmentation in retinal OCT using weak context supervision from anomaly detection; Elsevier Science; Medical Image Analysis; 93; 4-2024; 1-15 1361-8415 1361-8423 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S136184152400029X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.media.2024.103104 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613874628689920 |
score |
13.070432 |