Anomaly detection using prior knowledge: application to TCP/IP traffic

Autores
Couchet, Jorge; Ferreira, Enrique; Manrique, Daniel; Carrascal, Alberto
Año de publicación
2006
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
This article introduces an approach to anomaly intrusion detection based on a combination of supervised and unsupervised machine learning algorithms. The main objective of this work is an effective modeling of the TCP/IP network traffic of an organization that allows the detection of anomalies with an efficient percentage of false positives for a production environment. The architecture proposed uses a hierarchy of Self-Organizing Maps for traffic modeling combined with Learning Vector Quantization techniques to ultimately classify network packets. The architecture is developed using the known SNORT intrusion detection system to preprocess network traffic. In comparison to other techniques, results obtained in this work show that acceptable levels of compromise between attack detection and false positive rates can be achieved.
IFIP International Conference on Artificial Intelligence in Theory and Practice - Neural Nets
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
intrusion detection
false positive rates
self-organizing maps
Internet (e.g., TCP/IP)
Architectures
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23877

id SEDICI_309ced0b7203fdb155e7d129ae66b6aa
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23877
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Anomaly detection using prior knowledge: application to TCP/IP trafficCouchet, JorgeFerreira, EnriqueManrique, DanielCarrascal, AlbertoCiencias Informáticasintrusion detectionfalse positive ratesself-organizing mapsInternet (e.g., TCP/IP)ArchitecturesThis article introduces an approach to anomaly intrusion detection based on a combination of supervised and unsupervised machine learning algorithms. The main objective of this work is an effective modeling of the TCP/IP network traffic of an organization that allows the detection of anomalies with an efficient percentage of false positives for a production environment. The architecture proposed uses a hierarchy of Self-Organizing Maps for traffic modeling combined with Learning Vector Quantization techniques to ultimately classify network packets. The architecture is developed using the known SNORT intrusion detection system to preprocess network traffic. In comparison to other techniques, results obtained in this work show that acceptable levels of compromise between attack detection and false positive rates can be achieved.IFIP International Conference on Artificial Intelligence in Theory and Practice - Neural NetsRed de Universidades con Carreras en Informática (RedUNCI)2006-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23877enginfo:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:48:14Zoai:sedici.unlp.edu.ar:10915/23877Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:48:15.219SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Anomaly detection using prior knowledge: application to TCP/IP traffic
title Anomaly detection using prior knowledge: application to TCP/IP traffic
spellingShingle Anomaly detection using prior knowledge: application to TCP/IP traffic
Couchet, Jorge
Ciencias Informáticas
intrusion detection
false positive rates
self-organizing maps
Internet (e.g., TCP/IP)
Architectures
title_short Anomaly detection using prior knowledge: application to TCP/IP traffic
title_full Anomaly detection using prior knowledge: application to TCP/IP traffic
title_fullStr Anomaly detection using prior knowledge: application to TCP/IP traffic
title_full_unstemmed Anomaly detection using prior knowledge: application to TCP/IP traffic
title_sort Anomaly detection using prior knowledge: application to TCP/IP traffic
dc.creator.none.fl_str_mv Couchet, Jorge
Ferreira, Enrique
Manrique, Daniel
Carrascal, Alberto
author Couchet, Jorge
author_facet Couchet, Jorge
Ferreira, Enrique
Manrique, Daniel
Carrascal, Alberto
author_role author
author2 Ferreira, Enrique
Manrique, Daniel
Carrascal, Alberto
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
intrusion detection
false positive rates
self-organizing maps
Internet (e.g., TCP/IP)
Architectures
topic Ciencias Informáticas
intrusion detection
false positive rates
self-organizing maps
Internet (e.g., TCP/IP)
Architectures
dc.description.none.fl_txt_mv This article introduces an approach to anomaly intrusion detection based on a combination of supervised and unsupervised machine learning algorithms. The main objective of this work is an effective modeling of the TCP/IP network traffic of an organization that allows the detection of anomalies with an efficient percentage of false positives for a production environment. The architecture proposed uses a hierarchy of Self-Organizing Maps for traffic modeling combined with Learning Vector Quantization techniques to ultimately classify network packets. The architecture is developed using the known SNORT intrusion detection system to preprocess network traffic. In comparison to other techniques, results obtained in this work show that acceptable levels of compromise between attack detection and false positive rates can be achieved.
IFIP International Conference on Artificial Intelligence in Theory and Practice - Neural Nets
Red de Universidades con Carreras en Informática (RedUNCI)
description This article introduces an approach to anomaly intrusion detection based on a combination of supervised and unsupervised machine learning algorithms. The main objective of this work is an effective modeling of the TCP/IP network traffic of an organization that allows the detection of anomalies with an efficient percentage of false positives for a production environment. The architecture proposed uses a hierarchy of Self-Organizing Maps for traffic modeling combined with Learning Vector Quantization techniques to ultimately classify network packets. The architecture is developed using the known SNORT intrusion detection system to preprocess network traffic. In comparison to other techniques, results obtained in this work show that acceptable levels of compromise between attack detection and false positive rates can be achieved.
publishDate 2006
dc.date.none.fl_str_mv 2006-08
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23877
url http://sedici.unlp.edu.ar/handle/10915/23877
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846063909879939072
score 13.22299