Intelligent Anomaly Detection System for IoT

Autores
Bolatti, Diego; Karanik, Marcelo J.; Todt, Carolina; Scappini, Reinaldo José Ramón; Gramajo, Sergio D.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The growing use of the Internet of Things (IoT) in different areas implies a proportional growth in threats and attacks on end devices. To solve this problem, the IoT systems must be equipped with an anomaly detection system (ADS). This work introduces the design of a hybrid ADS based on the Software-Defined Network (SDN) architecture, which combines the rule-based and Machine Learning-based detection technique. Whereas the rule-based approach is used to detect known attacks with the help of rules defined by security experts. And the Machine Learning approach is used to detect unknown attacks with the help of Artificial Intelligence techniques.
Facultad de Informática
Materia
Ciencias Informáticas
IoT
Anomaly detection
Machine learning
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/125150

id SEDICI_f5d933a591c0ff820292ee64541db74a
oai_identifier_str oai:sedici.unlp.edu.ar:10915/125150
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Intelligent Anomaly Detection System for IoTBolatti, DiegoKaranik, Marcelo J.Todt, CarolinaScappini, Reinaldo José RamónGramajo, Sergio D.Ciencias InformáticasIoTAnomaly detectionMachine learningThe growing use of the Internet of Things (IoT) in different areas implies a proportional growth in threats and attacks on end devices. To solve this problem, the IoT systems must be equipped with an anomaly detection system (ADS). This work introduces the design of a hybrid ADS based on the Software-Defined Network (SDN) architecture, which combines the rule-based and Machine Learning-based detection technique. Whereas the rule-based approach is used to detect known attacks with the help of rules defined by security experts. And the Machine Learning approach is used to detect unknown attacks with the help of Artificial Intelligence techniques.Facultad de Informática2021info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf47-50http://sedici.unlp.edu.ar/handle/10915/125150enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-2016-4info:eu-repo/semantics/reference/hdl/10915/121564info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:22:01Zoai:sedici.unlp.edu.ar:10915/125150Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:22:01.329SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Intelligent Anomaly Detection System for IoT
title Intelligent Anomaly Detection System for IoT
spellingShingle Intelligent Anomaly Detection System for IoT
Bolatti, Diego
Ciencias Informáticas
IoT
Anomaly detection
Machine learning
title_short Intelligent Anomaly Detection System for IoT
title_full Intelligent Anomaly Detection System for IoT
title_fullStr Intelligent Anomaly Detection System for IoT
title_full_unstemmed Intelligent Anomaly Detection System for IoT
title_sort Intelligent Anomaly Detection System for IoT
dc.creator.none.fl_str_mv Bolatti, Diego
Karanik, Marcelo J.
Todt, Carolina
Scappini, Reinaldo José Ramón
Gramajo, Sergio D.
author Bolatti, Diego
author_facet Bolatti, Diego
Karanik, Marcelo J.
Todt, Carolina
Scappini, Reinaldo José Ramón
Gramajo, Sergio D.
author_role author
author2 Karanik, Marcelo J.
Todt, Carolina
Scappini, Reinaldo José Ramón
Gramajo, Sergio D.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
IoT
Anomaly detection
Machine learning
topic Ciencias Informáticas
IoT
Anomaly detection
Machine learning
dc.description.none.fl_txt_mv The growing use of the Internet of Things (IoT) in different areas implies a proportional growth in threats and attacks on end devices. To solve this problem, the IoT systems must be equipped with an anomaly detection system (ADS). This work introduces the design of a hybrid ADS based on the Software-Defined Network (SDN) architecture, which combines the rule-based and Machine Learning-based detection technique. Whereas the rule-based approach is used to detect known attacks with the help of rules defined by security experts. And the Machine Learning approach is used to detect unknown attacks with the help of Artificial Intelligence techniques.
Facultad de Informática
description The growing use of the Internet of Things (IoT) in different areas implies a proportional growth in threats and attacks on end devices. To solve this problem, the IoT systems must be equipped with an anomaly detection system (ADS). This work introduces the design of a hybrid ADS based on the Software-Defined Network (SDN) architecture, which combines the rule-based and Machine Learning-based detection technique. Whereas the rule-based approach is used to detect known attacks with the help of rules defined by security experts. And the Machine Learning approach is used to detect unknown attacks with the help of Artificial Intelligence techniques.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/125150
url http://sedici.unlp.edu.ar/handle/10915/125150
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-950-34-2016-4
info:eu-repo/semantics/reference/hdl/10915/121564
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
47-50
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064276318453760
score 13.22299