Hölder coverings of sets of small dimension
- Autores
- Rossi, Eino Vihtori; Shmerkin, Pablo Sebastian
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that a set of small box counting dimension can be covered by a H¨older graph from all but a small set of directions, and give sharp bounds for the dimension of the exceptional set, improving a result of B. Hunt and V. Kaloshin. We observe that, as a consequence, H¨older graphs can have positive doubling measure, answering a question of T. Ojala and T. Rajala. We also give remarks on H¨older coverings in polar coordinates and, on the other hand, prove that a Homogenous set of small box counting dimension can be covered by a Lipschitz graph from all but a small set of directions.
Fil: Rossi, Eino Vihtori. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina - Materia
-
BOX DIMENSION
HOLDER GRAPH
THIN SETS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/131239
Ver los metadatos del registro completo
id |
CONICETDig_f88659991ba5ea654d4574ada1d1886c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/131239 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hölder coverings of sets of small dimensionRossi, Eino VihtoriShmerkin, Pablo SebastianBOX DIMENSIONHOLDER GRAPHTHIN SETShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that a set of small box counting dimension can be covered by a H¨older graph from all but a small set of directions, and give sharp bounds for the dimension of the exceptional set, improving a result of B. Hunt and V. Kaloshin. We observe that, as a consequence, H¨older graphs can have positive doubling measure, answering a question of T. Ojala and T. Rajala. We also give remarks on H¨older coverings in polar coordinates and, on the other hand, prove that a Homogenous set of small box counting dimension can be covered by a Lipschitz graph from all but a small set of directions.Fil: Rossi, Eino Vihtori. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; ArgentinaEuropean Mathematical Society2019-06-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/131239Rossi, Eino Vihtori; Shmerkin, Pablo Sebastian; Hölder coverings of sets of small dimension; European Mathematical Society; Journal of Fractal Geometry; 6; 3; 24-6-2019; 285-2992308-13092308-1317CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4171/JFG/78info:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/journals/show_abstract.php?issn=2308-1309&vol=6&iss=3&rank=4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:39Zoai:ri.conicet.gov.ar:11336/131239instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:39.536CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hölder coverings of sets of small dimension |
title |
Hölder coverings of sets of small dimension |
spellingShingle |
Hölder coverings of sets of small dimension Rossi, Eino Vihtori BOX DIMENSION HOLDER GRAPH THIN SETS |
title_short |
Hölder coverings of sets of small dimension |
title_full |
Hölder coverings of sets of small dimension |
title_fullStr |
Hölder coverings of sets of small dimension |
title_full_unstemmed |
Hölder coverings of sets of small dimension |
title_sort |
Hölder coverings of sets of small dimension |
dc.creator.none.fl_str_mv |
Rossi, Eino Vihtori Shmerkin, Pablo Sebastian |
author |
Rossi, Eino Vihtori |
author_facet |
Rossi, Eino Vihtori Shmerkin, Pablo Sebastian |
author_role |
author |
author2 |
Shmerkin, Pablo Sebastian |
author2_role |
author |
dc.subject.none.fl_str_mv |
BOX DIMENSION HOLDER GRAPH THIN SETS |
topic |
BOX DIMENSION HOLDER GRAPH THIN SETS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We show that a set of small box counting dimension can be covered by a H¨older graph from all but a small set of directions, and give sharp bounds for the dimension of the exceptional set, improving a result of B. Hunt and V. Kaloshin. We observe that, as a consequence, H¨older graphs can have positive doubling measure, answering a question of T. Ojala and T. Rajala. We also give remarks on H¨older coverings in polar coordinates and, on the other hand, prove that a Homogenous set of small box counting dimension can be covered by a Lipschitz graph from all but a small set of directions. Fil: Rossi, Eino Vihtori. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina |
description |
We show that a set of small box counting dimension can be covered by a H¨older graph from all but a small set of directions, and give sharp bounds for the dimension of the exceptional set, improving a result of B. Hunt and V. Kaloshin. We observe that, as a consequence, H¨older graphs can have positive doubling measure, answering a question of T. Ojala and T. Rajala. We also give remarks on H¨older coverings in polar coordinates and, on the other hand, prove that a Homogenous set of small box counting dimension can be covered by a Lipschitz graph from all but a small set of directions. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-06-24 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/131239 Rossi, Eino Vihtori; Shmerkin, Pablo Sebastian; Hölder coverings of sets of small dimension; European Mathematical Society; Journal of Fractal Geometry; 6; 3; 24-6-2019; 285-299 2308-1309 2308-1317 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/131239 |
identifier_str_mv |
Rossi, Eino Vihtori; Shmerkin, Pablo Sebastian; Hölder coverings of sets of small dimension; European Mathematical Society; Journal of Fractal Geometry; 6; 3; 24-6-2019; 285-299 2308-1309 2308-1317 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4171/JFG/78 info:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/journals/show_abstract.php?issn=2308-1309&vol=6&iss=3&rank=4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
European Mathematical Society |
publisher.none.fl_str_mv |
European Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269709428326400 |
score |
13.13397 |