On Kadison’s Carpenters theorem
- Autores
- Argerami, Martin; Massey, Pedro Gustavo
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let M be a II1 factor with trace τ, A⊆M a masa and EA the unique conditional expectation onto A. Under some technical assumptions on the inclusion A⊆M, which hold true for any semiregular masa of a separable factor, we show that for elements a in certain dense families of the positive part of the unit ball of A, it is possible to find a projection p ∈ M such that EA(p) = a. This shows a new family of instances of a conjecture by Kadison, the so-called “carpenter’s theorem”.
Fil: Argerami, Martin. University of Regina; Canadá
Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina - Materia
-
Diagonals of operators
Schur-Horn theorem
conditional expectations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19480
Ver los metadatos del registro completo
id |
CONICETDig_6c262773cbff621ffb730b7cb709597d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19480 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On Kadison’s Carpenters theoremArgerami, MartinMassey, Pedro GustavoDiagonals of operatorsSchur-Horn theoremconditional expectationshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let M be a II1 factor with trace τ, A⊆M a masa and EA the unique conditional expectation onto A. Under some technical assumptions on the inclusion A⊆M, which hold true for any semiregular masa of a separable factor, we show that for elements a in certain dense families of the positive part of the unit ball of A, it is possible to find a projection p ∈ M such that EA(p) = a. This shows a new family of instances of a conjecture by Kadison, the so-called “carpenter’s theorem”.Fil: Argerami, Martin. University of Regina; CanadáFil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaAmerican Mathematical Society2009-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19480Argerami, Martin; Massey, Pedro Gustavo; On Kadison’s Carpenters theorem; American Mathematical Society; Proceedings of the American Mathematical Society; 137; 11; 11-2009; 3679-36870002-9939CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2009-137-11/S0002-9939-09-09999-7/info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-09-09999-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:40Zoai:ri.conicet.gov.ar:11336/19480instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:40.462CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On Kadison’s Carpenters theorem |
title |
On Kadison’s Carpenters theorem |
spellingShingle |
On Kadison’s Carpenters theorem Argerami, Martin Diagonals of operators Schur-Horn theorem conditional expectations |
title_short |
On Kadison’s Carpenters theorem |
title_full |
On Kadison’s Carpenters theorem |
title_fullStr |
On Kadison’s Carpenters theorem |
title_full_unstemmed |
On Kadison’s Carpenters theorem |
title_sort |
On Kadison’s Carpenters theorem |
dc.creator.none.fl_str_mv |
Argerami, Martin Massey, Pedro Gustavo |
author |
Argerami, Martin |
author_facet |
Argerami, Martin Massey, Pedro Gustavo |
author_role |
author |
author2 |
Massey, Pedro Gustavo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Diagonals of operators Schur-Horn theorem conditional expectations |
topic |
Diagonals of operators Schur-Horn theorem conditional expectations |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let M be a II1 factor with trace τ, A⊆M a masa and EA the unique conditional expectation onto A. Under some technical assumptions on the inclusion A⊆M, which hold true for any semiregular masa of a separable factor, we show that for elements a in certain dense families of the positive part of the unit ball of A, it is possible to find a projection p ∈ M such that EA(p) = a. This shows a new family of instances of a conjecture by Kadison, the so-called “carpenter’s theorem”. Fil: Argerami, Martin. University of Regina; Canadá Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina |
description |
Let M be a II1 factor with trace τ, A⊆M a masa and EA the unique conditional expectation onto A. Under some technical assumptions on the inclusion A⊆M, which hold true for any semiregular masa of a separable factor, we show that for elements a in certain dense families of the positive part of the unit ball of A, it is possible to find a projection p ∈ M such that EA(p) = a. This shows a new family of instances of a conjecture by Kadison, the so-called “carpenter’s theorem”. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19480 Argerami, Martin; Massey, Pedro Gustavo; On Kadison’s Carpenters theorem; American Mathematical Society; Proceedings of the American Mathematical Society; 137; 11; 11-2009; 3679-3687 0002-9939 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19480 |
identifier_str_mv |
Argerami, Martin; Massey, Pedro Gustavo; On Kadison’s Carpenters theorem; American Mathematical Society; Proceedings of the American Mathematical Society; 137; 11; 11-2009; 3679-3687 0002-9939 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2009-137-11/S0002-9939-09-09999-7/ info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-09-09999-7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613314707980288 |
score |
13.070432 |