On Kadison’s Carpenters theorem

Autores
Argerami, Martin; Massey, Pedro Gustavo
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let M be a II1 factor with trace τ, A⊆M a masa and EA the unique conditional expectation onto A. Under some technical assumptions on the inclusion A⊆M, which hold true for any semiregular masa of a separable factor, we show that for elements a in certain dense families of the positive part of the unit ball of A, it is possible to find a projection p ∈ M such that EA(p) = a. This shows a new family of instances of a conjecture by Kadison, the so-called “carpenter’s theorem”.
Fil: Argerami, Martin. University of Regina; Canadá
Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Materia
Diagonals of operators
Schur-Horn theorem
conditional expectations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19480

id CONICETDig_6c262773cbff621ffb730b7cb709597d
oai_identifier_str oai:ri.conicet.gov.ar:11336/19480
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On Kadison’s Carpenters theoremArgerami, MartinMassey, Pedro GustavoDiagonals of operatorsSchur-Horn theoremconditional expectationshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let M be a II1 factor with trace τ, A⊆M a masa and EA the unique conditional expectation onto A. Under some technical assumptions on the inclusion A⊆M, which hold true for any semiregular masa of a separable factor, we show that for elements a in certain dense families of the positive part of the unit ball of A, it is possible to find a projection p ∈ M such that EA(p) = a. This shows a new family of instances of a conjecture by Kadison, the so-called “carpenter’s theorem”.Fil: Argerami, Martin. University of Regina; CanadáFil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaAmerican Mathematical Society2009-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19480Argerami, Martin; Massey, Pedro Gustavo; On Kadison’s Carpenters theorem; American Mathematical Society; Proceedings of the American Mathematical Society; 137; 11; 11-2009; 3679-36870002-9939CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2009-137-11/S0002-9939-09-09999-7/info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-09-09999-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:40Zoai:ri.conicet.gov.ar:11336/19480instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:40.462CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On Kadison’s Carpenters theorem
title On Kadison’s Carpenters theorem
spellingShingle On Kadison’s Carpenters theorem
Argerami, Martin
Diagonals of operators
Schur-Horn theorem
conditional expectations
title_short On Kadison’s Carpenters theorem
title_full On Kadison’s Carpenters theorem
title_fullStr On Kadison’s Carpenters theorem
title_full_unstemmed On Kadison’s Carpenters theorem
title_sort On Kadison’s Carpenters theorem
dc.creator.none.fl_str_mv Argerami, Martin
Massey, Pedro Gustavo
author Argerami, Martin
author_facet Argerami, Martin
Massey, Pedro Gustavo
author_role author
author2 Massey, Pedro Gustavo
author2_role author
dc.subject.none.fl_str_mv Diagonals of operators
Schur-Horn theorem
conditional expectations
topic Diagonals of operators
Schur-Horn theorem
conditional expectations
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let M be a II1 factor with trace τ, A⊆M a masa and EA the unique conditional expectation onto A. Under some technical assumptions on the inclusion A⊆M, which hold true for any semiregular masa of a separable factor, we show that for elements a in certain dense families of the positive part of the unit ball of A, it is possible to find a projection p ∈ M such that EA(p) = a. This shows a new family of instances of a conjecture by Kadison, the so-called “carpenter’s theorem”.
Fil: Argerami, Martin. University of Regina; Canadá
Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
description Let M be a II1 factor with trace τ, A⊆M a masa and EA the unique conditional expectation onto A. Under some technical assumptions on the inclusion A⊆M, which hold true for any semiregular masa of a separable factor, we show that for elements a in certain dense families of the positive part of the unit ball of A, it is possible to find a projection p ∈ M such that EA(p) = a. This shows a new family of instances of a conjecture by Kadison, the so-called “carpenter’s theorem”.
publishDate 2009
dc.date.none.fl_str_mv 2009-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19480
Argerami, Martin; Massey, Pedro Gustavo; On Kadison’s Carpenters theorem; American Mathematical Society; Proceedings of the American Mathematical Society; 137; 11; 11-2009; 3679-3687
0002-9939
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19480
identifier_str_mv Argerami, Martin; Massey, Pedro Gustavo; On Kadison’s Carpenters theorem; American Mathematical Society; Proceedings of the American Mathematical Society; 137; 11; 11-2009; 3679-3687
0002-9939
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2009-137-11/S0002-9939-09-09999-7/
info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-09-09999-7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613314707980288
score 13.070432