Properties of some breather solutions of a nonlocal discrete NLS equation
- Autores
- Ben, Roberto Ignacio; Borgna, Juan Pablo; Panayotaros, Panayotis
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present results on breather solutions of a discrete nonlinear Schrödinger equation with a cubic Hartree-type nonlinearity that models laser light propagation in waveguide arrays that use a nematic liquid crystal substratum. A recent study of that model by Ben et al [R.I. Ben, L. Cisneros Ake, A.A. Minzoni, and P. Panayotaros, Phys. Lett. A, 379:1705C-1714, 2015] showed that nonlocality leads to some novel properties such as the existence of orbitaly stable breathers with internal modes, and of shelf-like configurations with maxima at the interface. In this work we present rigorous results on these phenomena and consider some more general solutions. First, we study energy minimizing breathers, showing existence as well as symmetry and monotonicity properties. We also prove results on the spectrum of the linearization around one-peak breathers, solutions that are expected to coincide with minimizers in the regime of small linear intersite coupling. A second set of results concerns shelf-type breather solutions that may be thought of as limits of solutions examined in [R.I. Ben, L. Cisneros Ake, A.A. Minzoni, and P. Panayotaros, Phys. Lett. A, 379:1705C-1714, 2015]. We show the existence of solutions with a non-monotonic front-like shape and justify computations of the essential spectrum of the linearization around these solutions in the local and nonlocal cases.
Fil: Ben, Roberto Ignacio. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina
Fil: Borgna, Juan Pablo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Panayotaros, Panayotis. Universidad Nacional Autonoma de Mexico. Facultad de Ciencias; México - Materia
-
Discrete Nonlinear SchrÖDinger Equations
Nonlocal Effects
Localized Solutions
Breather Solutions
Linear Stability - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/42471
Ver los metadatos del registro completo
id |
CONICETDig_ac866e58cc1c6ba92b4019d3d701cd42 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/42471 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Properties of some breather solutions of a nonlocal discrete NLS equationBen, Roberto IgnacioBorgna, Juan PabloPanayotaros, PanayotisDiscrete Nonlinear SchrÖDinger EquationsNonlocal EffectsLocalized SolutionsBreather SolutionsLinear Stabilityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present results on breather solutions of a discrete nonlinear Schrödinger equation with a cubic Hartree-type nonlinearity that models laser light propagation in waveguide arrays that use a nematic liquid crystal substratum. A recent study of that model by Ben et al [R.I. Ben, L. Cisneros Ake, A.A. Minzoni, and P. Panayotaros, Phys. Lett. A, 379:1705C-1714, 2015] showed that nonlocality leads to some novel properties such as the existence of orbitaly stable breathers with internal modes, and of shelf-like configurations with maxima at the interface. In this work we present rigorous results on these phenomena and consider some more general solutions. First, we study energy minimizing breathers, showing existence as well as symmetry and monotonicity properties. We also prove results on the spectrum of the linearization around one-peak breathers, solutions that are expected to coincide with minimizers in the regime of small linear intersite coupling. A second set of results concerns shelf-type breather solutions that may be thought of as limits of solutions examined in [R.I. Ben, L. Cisneros Ake, A.A. Minzoni, and P. Panayotaros, Phys. Lett. A, 379:1705C-1714, 2015]. We show the existence of solutions with a non-monotonic front-like shape and justify computations of the essential spectrum of the linearization around these solutions in the local and nonlocal cases.Fil: Ben, Roberto Ignacio. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; ArgentinaFil: Borgna, Juan Pablo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Panayotaros, Panayotis. Universidad Nacional Autonoma de Mexico. Facultad de Ciencias; MéxicoInternational Press Boston2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42471Ben, Roberto Ignacio; Borgna, Juan Pablo; Panayotaros, Panayotis; Properties of some breather solutions of a nonlocal discrete NLS equation; International Press Boston; Communications in Mathematical Sciences; 15; 8; 12-2017; 2143-21751539-6746CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4310/CMS.2017.v15.n8.a3info:eu-repo/semantics/altIdentifier/url/http://www.intlpress.com/site/pub/pages/journals/items/cms/content/vols/0015/0008/a003/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:05Zoai:ri.conicet.gov.ar:11336/42471instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:06.268CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Properties of some breather solutions of a nonlocal discrete NLS equation |
title |
Properties of some breather solutions of a nonlocal discrete NLS equation |
spellingShingle |
Properties of some breather solutions of a nonlocal discrete NLS equation Ben, Roberto Ignacio Discrete Nonlinear SchrÖDinger Equations Nonlocal Effects Localized Solutions Breather Solutions Linear Stability |
title_short |
Properties of some breather solutions of a nonlocal discrete NLS equation |
title_full |
Properties of some breather solutions of a nonlocal discrete NLS equation |
title_fullStr |
Properties of some breather solutions of a nonlocal discrete NLS equation |
title_full_unstemmed |
Properties of some breather solutions of a nonlocal discrete NLS equation |
title_sort |
Properties of some breather solutions of a nonlocal discrete NLS equation |
dc.creator.none.fl_str_mv |
Ben, Roberto Ignacio Borgna, Juan Pablo Panayotaros, Panayotis |
author |
Ben, Roberto Ignacio |
author_facet |
Ben, Roberto Ignacio Borgna, Juan Pablo Panayotaros, Panayotis |
author_role |
author |
author2 |
Borgna, Juan Pablo Panayotaros, Panayotis |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Discrete Nonlinear SchrÖDinger Equations Nonlocal Effects Localized Solutions Breather Solutions Linear Stability |
topic |
Discrete Nonlinear SchrÖDinger Equations Nonlocal Effects Localized Solutions Breather Solutions Linear Stability |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present results on breather solutions of a discrete nonlinear Schrödinger equation with a cubic Hartree-type nonlinearity that models laser light propagation in waveguide arrays that use a nematic liquid crystal substratum. A recent study of that model by Ben et al [R.I. Ben, L. Cisneros Ake, A.A. Minzoni, and P. Panayotaros, Phys. Lett. A, 379:1705C-1714, 2015] showed that nonlocality leads to some novel properties such as the existence of orbitaly stable breathers with internal modes, and of shelf-like configurations with maxima at the interface. In this work we present rigorous results on these phenomena and consider some more general solutions. First, we study energy minimizing breathers, showing existence as well as symmetry and monotonicity properties. We also prove results on the spectrum of the linearization around one-peak breathers, solutions that are expected to coincide with minimizers in the regime of small linear intersite coupling. A second set of results concerns shelf-type breather solutions that may be thought of as limits of solutions examined in [R.I. Ben, L. Cisneros Ake, A.A. Minzoni, and P. Panayotaros, Phys. Lett. A, 379:1705C-1714, 2015]. We show the existence of solutions with a non-monotonic front-like shape and justify computations of the essential spectrum of the linearization around these solutions in the local and nonlocal cases. Fil: Ben, Roberto Ignacio. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina Fil: Borgna, Juan Pablo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Panayotaros, Panayotis. Universidad Nacional Autonoma de Mexico. Facultad de Ciencias; México |
description |
We present results on breather solutions of a discrete nonlinear Schrödinger equation with a cubic Hartree-type nonlinearity that models laser light propagation in waveguide arrays that use a nematic liquid crystal substratum. A recent study of that model by Ben et al [R.I. Ben, L. Cisneros Ake, A.A. Minzoni, and P. Panayotaros, Phys. Lett. A, 379:1705C-1714, 2015] showed that nonlocality leads to some novel properties such as the existence of orbitaly stable breathers with internal modes, and of shelf-like configurations with maxima at the interface. In this work we present rigorous results on these phenomena and consider some more general solutions. First, we study energy minimizing breathers, showing existence as well as symmetry and monotonicity properties. We also prove results on the spectrum of the linearization around one-peak breathers, solutions that are expected to coincide with minimizers in the regime of small linear intersite coupling. A second set of results concerns shelf-type breather solutions that may be thought of as limits of solutions examined in [R.I. Ben, L. Cisneros Ake, A.A. Minzoni, and P. Panayotaros, Phys. Lett. A, 379:1705C-1714, 2015]. We show the existence of solutions with a non-monotonic front-like shape and justify computations of the essential spectrum of the linearization around these solutions in the local and nonlocal cases. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/42471 Ben, Roberto Ignacio; Borgna, Juan Pablo; Panayotaros, Panayotis; Properties of some breather solutions of a nonlocal discrete NLS equation; International Press Boston; Communications in Mathematical Sciences; 15; 8; 12-2017; 2143-2175 1539-6746 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/42471 |
identifier_str_mv |
Ben, Roberto Ignacio; Borgna, Juan Pablo; Panayotaros, Panayotis; Properties of some breather solutions of a nonlocal discrete NLS equation; International Press Boston; Communications in Mathematical Sciences; 15; 8; 12-2017; 2143-2175 1539-6746 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4310/CMS.2017.v15.n8.a3 info:eu-repo/semantics/altIdentifier/url/http://www.intlpress.com/site/pub/pages/journals/items/cms/content/vols/0015/0008/a003/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
International Press Boston |
publisher.none.fl_str_mv |
International Press Boston |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613599307235328 |
score |
13.070432 |