Properties of some breather solutions of a nonlocal discrete NLS equation

Autores
Ben, Roberto Ignacio; Borgna, Juan Pablo; Panayotaros, Panayotis
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present results on breather solutions of a discrete nonlinear Schrödinger equation with a cubic Hartree-type nonlinearity that models laser light propagation in waveguide arrays that use a nematic liquid crystal substratum. A recent study of that model by Ben et al [R.I. Ben, L. Cisneros Ake, A.A. Minzoni, and P. Panayotaros, Phys. Lett. A, 379:1705C-1714, 2015] showed that nonlocality leads to some novel properties such as the existence of orbitaly stable breathers with internal modes, and of shelf-like configurations with maxima at the interface. In this work we present rigorous results on these phenomena and consider some more general solutions. First, we study energy minimizing breathers, showing existence as well as symmetry and monotonicity properties. We also prove results on the spectrum of the linearization around one-peak breathers, solutions that are expected to coincide with minimizers in the regime of small linear intersite coupling. A second set of results concerns shelf-type breather solutions that may be thought of as limits of solutions examined in [R.I. Ben, L. Cisneros Ake, A.A. Minzoni, and P. Panayotaros, Phys. Lett. A, 379:1705C-1714, 2015]. We show the existence of solutions with a non-monotonic front-like shape and justify computations of the essential spectrum of the linearization around these solutions in the local and nonlocal cases.
Fil: Ben, Roberto Ignacio. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina
Fil: Borgna, Juan Pablo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Panayotaros, Panayotis. Universidad Nacional Autonoma de Mexico. Facultad de Ciencias; México
Materia
Discrete Nonlinear SchrÖDinger Equations
Nonlocal Effects
Localized Solutions
Breather Solutions
Linear Stability
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/42471

id CONICETDig_ac866e58cc1c6ba92b4019d3d701cd42
oai_identifier_str oai:ri.conicet.gov.ar:11336/42471
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Properties of some breather solutions of a nonlocal discrete NLS equationBen, Roberto IgnacioBorgna, Juan PabloPanayotaros, PanayotisDiscrete Nonlinear SchrÖDinger EquationsNonlocal EffectsLocalized SolutionsBreather SolutionsLinear Stabilityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present results on breather solutions of a discrete nonlinear Schrödinger equation with a cubic Hartree-type nonlinearity that models laser light propagation in waveguide arrays that use a nematic liquid crystal substratum. A recent study of that model by Ben et al [R.I. Ben, L. Cisneros Ake, A.A. Minzoni, and P. Panayotaros, Phys. Lett. A, 379:1705C-1714, 2015] showed that nonlocality leads to some novel properties such as the existence of orbitaly stable breathers with internal modes, and of shelf-like configurations with maxima at the interface. In this work we present rigorous results on these phenomena and consider some more general solutions. First, we study energy minimizing breathers, showing existence as well as symmetry and monotonicity properties. We also prove results on the spectrum of the linearization around one-peak breathers, solutions that are expected to coincide with minimizers in the regime of small linear intersite coupling. A second set of results concerns shelf-type breather solutions that may be thought of as limits of solutions examined in [R.I. Ben, L. Cisneros Ake, A.A. Minzoni, and P. Panayotaros, Phys. Lett. A, 379:1705C-1714, 2015]. We show the existence of solutions with a non-monotonic front-like shape and justify computations of the essential spectrum of the linearization around these solutions in the local and nonlocal cases.Fil: Ben, Roberto Ignacio. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; ArgentinaFil: Borgna, Juan Pablo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Panayotaros, Panayotis. Universidad Nacional Autonoma de Mexico. Facultad de Ciencias; MéxicoInternational Press Boston2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42471Ben, Roberto Ignacio; Borgna, Juan Pablo; Panayotaros, Panayotis; Properties of some breather solutions of a nonlocal discrete NLS equation; International Press Boston; Communications in Mathematical Sciences; 15; 8; 12-2017; 2143-21751539-6746CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4310/CMS.2017.v15.n8.a3info:eu-repo/semantics/altIdentifier/url/http://www.intlpress.com/site/pub/pages/journals/items/cms/content/vols/0015/0008/a003/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:05Zoai:ri.conicet.gov.ar:11336/42471instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:06.268CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Properties of some breather solutions of a nonlocal discrete NLS equation
title Properties of some breather solutions of a nonlocal discrete NLS equation
spellingShingle Properties of some breather solutions of a nonlocal discrete NLS equation
Ben, Roberto Ignacio
Discrete Nonlinear SchrÖDinger Equations
Nonlocal Effects
Localized Solutions
Breather Solutions
Linear Stability
title_short Properties of some breather solutions of a nonlocal discrete NLS equation
title_full Properties of some breather solutions of a nonlocal discrete NLS equation
title_fullStr Properties of some breather solutions of a nonlocal discrete NLS equation
title_full_unstemmed Properties of some breather solutions of a nonlocal discrete NLS equation
title_sort Properties of some breather solutions of a nonlocal discrete NLS equation
dc.creator.none.fl_str_mv Ben, Roberto Ignacio
Borgna, Juan Pablo
Panayotaros, Panayotis
author Ben, Roberto Ignacio
author_facet Ben, Roberto Ignacio
Borgna, Juan Pablo
Panayotaros, Panayotis
author_role author
author2 Borgna, Juan Pablo
Panayotaros, Panayotis
author2_role author
author
dc.subject.none.fl_str_mv Discrete Nonlinear SchrÖDinger Equations
Nonlocal Effects
Localized Solutions
Breather Solutions
Linear Stability
topic Discrete Nonlinear SchrÖDinger Equations
Nonlocal Effects
Localized Solutions
Breather Solutions
Linear Stability
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present results on breather solutions of a discrete nonlinear Schrödinger equation with a cubic Hartree-type nonlinearity that models laser light propagation in waveguide arrays that use a nematic liquid crystal substratum. A recent study of that model by Ben et al [R.I. Ben, L. Cisneros Ake, A.A. Minzoni, and P. Panayotaros, Phys. Lett. A, 379:1705C-1714, 2015] showed that nonlocality leads to some novel properties such as the existence of orbitaly stable breathers with internal modes, and of shelf-like configurations with maxima at the interface. In this work we present rigorous results on these phenomena and consider some more general solutions. First, we study energy minimizing breathers, showing existence as well as symmetry and monotonicity properties. We also prove results on the spectrum of the linearization around one-peak breathers, solutions that are expected to coincide with minimizers in the regime of small linear intersite coupling. A second set of results concerns shelf-type breather solutions that may be thought of as limits of solutions examined in [R.I. Ben, L. Cisneros Ake, A.A. Minzoni, and P. Panayotaros, Phys. Lett. A, 379:1705C-1714, 2015]. We show the existence of solutions with a non-monotonic front-like shape and justify computations of the essential spectrum of the linearization around these solutions in the local and nonlocal cases.
Fil: Ben, Roberto Ignacio. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina
Fil: Borgna, Juan Pablo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Panayotaros, Panayotis. Universidad Nacional Autonoma de Mexico. Facultad de Ciencias; México
description We present results on breather solutions of a discrete nonlinear Schrödinger equation with a cubic Hartree-type nonlinearity that models laser light propagation in waveguide arrays that use a nematic liquid crystal substratum. A recent study of that model by Ben et al [R.I. Ben, L. Cisneros Ake, A.A. Minzoni, and P. Panayotaros, Phys. Lett. A, 379:1705C-1714, 2015] showed that nonlocality leads to some novel properties such as the existence of orbitaly stable breathers with internal modes, and of shelf-like configurations with maxima at the interface. In this work we present rigorous results on these phenomena and consider some more general solutions. First, we study energy minimizing breathers, showing existence as well as symmetry and monotonicity properties. We also prove results on the spectrum of the linearization around one-peak breathers, solutions that are expected to coincide with minimizers in the regime of small linear intersite coupling. A second set of results concerns shelf-type breather solutions that may be thought of as limits of solutions examined in [R.I. Ben, L. Cisneros Ake, A.A. Minzoni, and P. Panayotaros, Phys. Lett. A, 379:1705C-1714, 2015]. We show the existence of solutions with a non-monotonic front-like shape and justify computations of the essential spectrum of the linearization around these solutions in the local and nonlocal cases.
publishDate 2017
dc.date.none.fl_str_mv 2017-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/42471
Ben, Roberto Ignacio; Borgna, Juan Pablo; Panayotaros, Panayotis; Properties of some breather solutions of a nonlocal discrete NLS equation; International Press Boston; Communications in Mathematical Sciences; 15; 8; 12-2017; 2143-2175
1539-6746
CONICET Digital
CONICET
url http://hdl.handle.net/11336/42471
identifier_str_mv Ben, Roberto Ignacio; Borgna, Juan Pablo; Panayotaros, Panayotis; Properties of some breather solutions of a nonlocal discrete NLS equation; International Press Boston; Communications in Mathematical Sciences; 15; 8; 12-2017; 2143-2175
1539-6746
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.4310/CMS.2017.v15.n8.a3
info:eu-repo/semantics/altIdentifier/url/http://www.intlpress.com/site/pub/pages/journals/items/cms/content/vols/0015/0008/a003/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv International Press Boston
publisher.none.fl_str_mv International Press Boston
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613599307235328
score 13.070432