Multiple solutions for the p-laplace equation with nonlinear boundary conditions

Autores
Bonder, J.F.
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this note, we show the existence of at least three nontrivial solutions to the quasilinear elliptic equation -Δpu + |u|p-2u = f(x,u) in a smooth bounded domain Ω of Rdbl;N with nonlinear boundary conditions |Δu|p-2;∂u/∂v = g(x, u) on ∂Ω. The proof is based on variational arguments. © 2006 Texas State University - San Marcos.
Fuente
Electron. J. Differ. Equ. 2006;2006:1-7
Materia
Nonlinear boundary conditions
p-laplace equations
Variational methods
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_10726691_v2006_n_p1_Bonder

id BDUBAFCEN_944dd4d2d9c7a8b3ea0bf5cc28e600ad
oai_identifier_str paperaa:paper_10726691_v2006_n_p1_Bonder
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Multiple solutions for the p-laplace equation with nonlinear boundary conditionsBonder, J.F.Nonlinear boundary conditionsp-laplace equationsVariational methodsIn this note, we show the existence of at least three nontrivial solutions to the quasilinear elliptic equation -Δpu + |u|p-2u = f(x,u) in a smooth bounded domain Ω of Rdbl;N with nonlinear boundary conditions |Δu|p-2;∂u/∂v = g(x, u) on ∂Ω. The proof is based on variational arguments. © 2006 Texas State University - San Marcos.2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_10726691_v2006_n_p1_BonderElectron. J. Differ. Equ. 2006;2006:1-7reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:54Zpaperaa:paper_10726691_v2006_n_p1_BonderInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:56.075Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Multiple solutions for the p-laplace equation with nonlinear boundary conditions
title Multiple solutions for the p-laplace equation with nonlinear boundary conditions
spellingShingle Multiple solutions for the p-laplace equation with nonlinear boundary conditions
Bonder, J.F.
Nonlinear boundary conditions
p-laplace equations
Variational methods
title_short Multiple solutions for the p-laplace equation with nonlinear boundary conditions
title_full Multiple solutions for the p-laplace equation with nonlinear boundary conditions
title_fullStr Multiple solutions for the p-laplace equation with nonlinear boundary conditions
title_full_unstemmed Multiple solutions for the p-laplace equation with nonlinear boundary conditions
title_sort Multiple solutions for the p-laplace equation with nonlinear boundary conditions
dc.creator.none.fl_str_mv Bonder, J.F.
author Bonder, J.F.
author_facet Bonder, J.F.
author_role author
dc.subject.none.fl_str_mv Nonlinear boundary conditions
p-laplace equations
Variational methods
topic Nonlinear boundary conditions
p-laplace equations
Variational methods
dc.description.none.fl_txt_mv In this note, we show the existence of at least three nontrivial solutions to the quasilinear elliptic equation -Δpu + |u|p-2u = f(x,u) in a smooth bounded domain Ω of Rdbl;N with nonlinear boundary conditions |Δu|p-2;∂u/∂v = g(x, u) on ∂Ω. The proof is based on variational arguments. © 2006 Texas State University - San Marcos.
description In this note, we show the existence of at least three nontrivial solutions to the quasilinear elliptic equation -Δpu + |u|p-2u = f(x,u) in a smooth bounded domain Ω of Rdbl;N with nonlinear boundary conditions |Δu|p-2;∂u/∂v = g(x, u) on ∂Ω. The proof is based on variational arguments. © 2006 Texas State University - San Marcos.
publishDate 2006
dc.date.none.fl_str_mv 2006
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_10726691_v2006_n_p1_Bonder
url http://hdl.handle.net/20.500.12110/paper_10726691_v2006_n_p1_Bonder
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Electron. J. Differ. Equ. 2006;2006:1-7
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618735045836800
score 13.070432