Chern-Simons field theory on the general affine group, 3d-gravity and the extension of Cartan connections

Autores
Capriotti, Santiago
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The purpose of this article is to study the correspondence between 3d-gravity and the Chern–Simons field theory from the perspective of geometric mechanics, specifically in the case where the structure group is the general affine group. To accomplish this, the paper discusses a variational problem of the Chern–Simons type on a principal fiber bundle with this group as its structure group. The connection to the usual Chern–Simons theory is established by utilizing a generalization, in the context of Cartan connections, of the notion of extension and reduction of connections.
Fil: Capriotti, Santiago. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Materia
CHERN-SIMONS THEORY
CLASSICAL FIELD THEORY
GEOMETRIC MECHANICS
CARTAN CONNECTIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/237273

id CONICETDig_d3e7fc98fc45d7cbb50673f65866ab7c
oai_identifier_str oai:ri.conicet.gov.ar:11336/237273
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Chern-Simons field theory on the general affine group, 3d-gravity and the extension of Cartan connectionsCapriotti, SantiagoCHERN-SIMONS THEORYCLASSICAL FIELD THEORYGEOMETRIC MECHANICSCARTAN CONNECTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The purpose of this article is to study the correspondence between 3d-gravity and the Chern–Simons field theory from the perspective of geometric mechanics, specifically in the case where the structure group is the general affine group. To accomplish this, the paper discusses a variational problem of the Chern–Simons type on a principal fiber bundle with this group as its structure group. The connection to the usual Chern–Simons theory is established by utilizing a generalization, in the context of Cartan connections, of the notion of extension and reduction of connections.Fil: Capriotti, Santiago. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaAmerican Institute of Physics2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/237273Capriotti, Santiago; Chern-Simons field theory on the general affine group, 3d-gravity and the extension of Cartan connections; American Institute of Physics; Journal of Mathematical Physics; 65; 1; 1-2024; 1-460022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/aip/jmp/article-abstract/65/1/013506/3253560/Chern-Simons-field-theory-on-the-general-affine?redirectedFrom=fulltextinfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0168465info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2305.18688info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:09:46Zoai:ri.conicet.gov.ar:11336/237273instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:09:46.303CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Chern-Simons field theory on the general affine group, 3d-gravity and the extension of Cartan connections
title Chern-Simons field theory on the general affine group, 3d-gravity and the extension of Cartan connections
spellingShingle Chern-Simons field theory on the general affine group, 3d-gravity and the extension of Cartan connections
Capriotti, Santiago
CHERN-SIMONS THEORY
CLASSICAL FIELD THEORY
GEOMETRIC MECHANICS
CARTAN CONNECTIONS
title_short Chern-Simons field theory on the general affine group, 3d-gravity and the extension of Cartan connections
title_full Chern-Simons field theory on the general affine group, 3d-gravity and the extension of Cartan connections
title_fullStr Chern-Simons field theory on the general affine group, 3d-gravity and the extension of Cartan connections
title_full_unstemmed Chern-Simons field theory on the general affine group, 3d-gravity and the extension of Cartan connections
title_sort Chern-Simons field theory on the general affine group, 3d-gravity and the extension of Cartan connections
dc.creator.none.fl_str_mv Capriotti, Santiago
author Capriotti, Santiago
author_facet Capriotti, Santiago
author_role author
dc.subject.none.fl_str_mv CHERN-SIMONS THEORY
CLASSICAL FIELD THEORY
GEOMETRIC MECHANICS
CARTAN CONNECTIONS
topic CHERN-SIMONS THEORY
CLASSICAL FIELD THEORY
GEOMETRIC MECHANICS
CARTAN CONNECTIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The purpose of this article is to study the correspondence between 3d-gravity and the Chern–Simons field theory from the perspective of geometric mechanics, specifically in the case where the structure group is the general affine group. To accomplish this, the paper discusses a variational problem of the Chern–Simons type on a principal fiber bundle with this group as its structure group. The connection to the usual Chern–Simons theory is established by utilizing a generalization, in the context of Cartan connections, of the notion of extension and reduction of connections.
Fil: Capriotti, Santiago. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
description The purpose of this article is to study the correspondence between 3d-gravity and the Chern–Simons field theory from the perspective of geometric mechanics, specifically in the case where the structure group is the general affine group. To accomplish this, the paper discusses a variational problem of the Chern–Simons type on a principal fiber bundle with this group as its structure group. The connection to the usual Chern–Simons theory is established by utilizing a generalization, in the context of Cartan connections, of the notion of extension and reduction of connections.
publishDate 2024
dc.date.none.fl_str_mv 2024-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/237273
Capriotti, Santiago; Chern-Simons field theory on the general affine group, 3d-gravity and the extension of Cartan connections; American Institute of Physics; Journal of Mathematical Physics; 65; 1; 1-2024; 1-46
0022-2488
CONICET Digital
CONICET
url http://hdl.handle.net/11336/237273
identifier_str_mv Capriotti, Santiago; Chern-Simons field theory on the general affine group, 3d-gravity and the extension of Cartan connections; American Institute of Physics; Journal of Mathematical Physics; 65; 1; 1-2024; 1-46
0022-2488
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/aip/jmp/article-abstract/65/1/013506/3253560/Chern-Simons-field-theory-on-the-general-affine?redirectedFrom=fulltext
info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0168465
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2305.18688
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613979951857664
score 13.070432