The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry

Autores
Cendra, Hernán; Etchechoury, María del Rosario; Ferraro, Sebastián José
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Dirac theory of constraints has been widely studied and applied very successfully by physicists since the original works by Dirac and by Bergmann. From a mathematical standpoint, several aspects of the theory have been exposed rigorously afterwards by many authors. However, many questions related to, for instance, singular or infinite dimensional cases remain open. The work of Gotay and Nester presents a mathematical generalization in terms of presymplectic geometry, which introduces a dual point of view. We present a study of the Dirac theory of constraints emphasizing the duality between the Poisson-algebraic and the geometric points of view, related respectively to the work of Dirac and of Gotay and Nester, under strong regularity conditions. We deal with some questions insufficiently treated in the literature: a study of uniqueness of solution; avoiding almost completely the use of coordinates; the role of the Pontryagin bundle. We also show how one can globalize some results usually treated locally in the literature. For instance, we introduce the globalnotion of second class submanifoldas being tangent to a second class subbundle. A general study of global results for Dirac and Gotay-Nester theories remains an open question in this theory.
La teoría de Dirac ha sido ampliamente estudiada y aplicada muy exitosamente por los físicos desde los trabajos originales de Dirac y de Bergmann. Desde un punto de vista matemático, varios aspectos de la teoría han sido expuestos rigurosamente por varios autores. Sin embargo, aún quedan abiertas varias preguntas relacionadas, por ejemplo, con casos singulares o infinito-dimensionales. El trabajo de Gotay y Nester presenta una generalización matemática en términos de la geometría presimpléctica, lo cual introduce un punto de vista dual. Presentamos un estudio de la teoría de ligaduras de Dirac enfatizando la dualidad entre los puntos de vista de las álgebras de Poisson y de la geometría presimpléctica, relacionados respectivamente con los trabajos de Dirac y de Gotay-Nester, bajo condiciones de regularidad fuertes. Abordamos algunas cuestiones insuficientemente tratadas en la literatura: un estudio de la unicidad de solución; evitar casi completamente el uso de coordenadas; el rol del fibrado de Pontryagin. También mostramos cómo se pueden globalizar algunos resultados usualmente tratados localmente en la literatura. Por ejemplo, introducimos la noción globalde subvariedad de segunda clasecomo variedad tangente a un subfibrado de segunda clase. Un estudio general de resultados globales para las teorías de Dirac y de Gotay-Nester sigue siendo una pregunta abierta en esta teoría.
Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales
Facultad de Ciencias Exactas
Materia
Matemática
Dirac´s theory of constraints
Poisson geometry
Presymlectic manifolds
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/101465

id SEDICI_d362cbeae619227faf3041828bc65e13
oai_identifier_str oai:sedici.unlp.edu.ar:10915/101465
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometryCendra, HernánEtchechoury, María del RosarioFerraro, Sebastián JoséMatemáticaDirac´s theory of constraintsPoisson geometryPresymlectic manifoldsThe Dirac theory of constraints has been widely studied and applied very successfully by physicists since the original works by Dirac and by Bergmann. From a mathematical standpoint, several aspects of the theory have been exposed rigorously afterwards by many authors. However, many questions related to, for instance, singular or infinite dimensional cases remain open. The work of Gotay and Nester presents a mathematical generalization in terms of presymplectic geometry, which introduces a dual point of view. We present a study of the Dirac theory of constraints emphasizing the duality between the Poisson-algebraic and the geometric points of view, related respectively to the work of Dirac and of Gotay and Nester, under strong regularity conditions. We deal with some questions insufficiently treated in the literature: a study of uniqueness of solution; avoiding almost completely the use of coordinates; the role of the Pontryagin bundle. We also show how one can globalize some results usually treated locally in the literature. For instance, we introduce the globalnotion of second class submanifoldas being tangent to a second class subbundle. A general study of global results for Dirac and Gotay-Nester theories remains an open question in this theory.La teoría de Dirac ha sido ampliamente estudiada y aplicada muy exitosamente por los físicos desde los trabajos originales de Dirac y de Bergmann. Desde un punto de vista matemático, varios aspectos de la teoría han sido expuestos rigurosamente por varios autores. Sin embargo, aún quedan abiertas varias preguntas relacionadas, por ejemplo, con casos singulares o infinito-dimensionales. El trabajo de Gotay y Nester presenta una generalización matemática en términos de la geometría presimpléctica, lo cual introduce un punto de vista dual. Presentamos un estudio de la teoría de ligaduras de Dirac enfatizando la dualidad entre los puntos de vista de las álgebras de Poisson y de la geometría presimpléctica, relacionados respectivamente con los trabajos de Dirac y de Gotay-Nester, bajo condiciones de regularidad fuertes. Abordamos algunas cuestiones insuficientemente tratadas en la literatura: un estudio de la unicidad de solución; evitar casi completamente el uso de coordenadas; el rol del fibrado de Pontryagin. También mostramos cómo se pueden globalizar algunos resultados usualmente tratados localmente en la literatura. Por ejemplo, introducimos la noción globalde subvariedad de segunda clasecomo variedad tangente a un subfibrado de segunda clase. Un estudio general de resultados globales para las teorías de Dirac y de Gotay-Nester sigue siendo una pregunta abierta en esta teoría.Instituto de Investigaciones en Electrónica, Control y Procesamiento de SeñalesFacultad de Ciencias Exactas2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf117-156http://sedici.unlp.edu.ar/handle/10915/101465enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/79889info:eu-repo/semantics/altIdentifier/url/https://www.ancefn.org.ar/contenido.asp?id=2302info:eu-repo/semantics/altIdentifier/issn/0365-1185info:eu-repo/semantics/altIdentifier/hdl/11336/79889info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:21:00Zoai:sedici.unlp.edu.ar:10915/101465Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:21:00.575SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry
title The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry
spellingShingle The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry
Cendra, Hernán
Matemática
Dirac´s theory of constraints
Poisson geometry
Presymlectic manifolds
title_short The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry
title_full The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry
title_fullStr The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry
title_full_unstemmed The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry
title_sort The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry
dc.creator.none.fl_str_mv Cendra, Hernán
Etchechoury, María del Rosario
Ferraro, Sebastián José
author Cendra, Hernán
author_facet Cendra, Hernán
Etchechoury, María del Rosario
Ferraro, Sebastián José
author_role author
author2 Etchechoury, María del Rosario
Ferraro, Sebastián José
author2_role author
author
dc.subject.none.fl_str_mv Matemática
Dirac´s theory of constraints
Poisson geometry
Presymlectic manifolds
topic Matemática
Dirac´s theory of constraints
Poisson geometry
Presymlectic manifolds
dc.description.none.fl_txt_mv The Dirac theory of constraints has been widely studied and applied very successfully by physicists since the original works by Dirac and by Bergmann. From a mathematical standpoint, several aspects of the theory have been exposed rigorously afterwards by many authors. However, many questions related to, for instance, singular or infinite dimensional cases remain open. The work of Gotay and Nester presents a mathematical generalization in terms of presymplectic geometry, which introduces a dual point of view. We present a study of the Dirac theory of constraints emphasizing the duality between the Poisson-algebraic and the geometric points of view, related respectively to the work of Dirac and of Gotay and Nester, under strong regularity conditions. We deal with some questions insufficiently treated in the literature: a study of uniqueness of solution; avoiding almost completely the use of coordinates; the role of the Pontryagin bundle. We also show how one can globalize some results usually treated locally in the literature. For instance, we introduce the globalnotion of second class submanifoldas being tangent to a second class subbundle. A general study of global results for Dirac and Gotay-Nester theories remains an open question in this theory.
La teoría de Dirac ha sido ampliamente estudiada y aplicada muy exitosamente por los físicos desde los trabajos originales de Dirac y de Bergmann. Desde un punto de vista matemático, varios aspectos de la teoría han sido expuestos rigurosamente por varios autores. Sin embargo, aún quedan abiertas varias preguntas relacionadas, por ejemplo, con casos singulares o infinito-dimensionales. El trabajo de Gotay y Nester presenta una generalización matemática en términos de la geometría presimpléctica, lo cual introduce un punto de vista dual. Presentamos un estudio de la teoría de ligaduras de Dirac enfatizando la dualidad entre los puntos de vista de las álgebras de Poisson y de la geometría presimpléctica, relacionados respectivamente con los trabajos de Dirac y de Gotay-Nester, bajo condiciones de regularidad fuertes. Abordamos algunas cuestiones insuficientemente tratadas en la literatura: un estudio de la unicidad de solución; evitar casi completamente el uso de coordenadas; el rol del fibrado de Pontryagin. También mostramos cómo se pueden globalizar algunos resultados usualmente tratados localmente en la literatura. Por ejemplo, introducimos la noción globalde subvariedad de segunda clasecomo variedad tangente a un subfibrado de segunda clase. Un estudio general de resultados globales para las teorías de Dirac y de Gotay-Nester sigue siendo una pregunta abierta en esta teoría.
Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales
Facultad de Ciencias Exactas
description The Dirac theory of constraints has been widely studied and applied very successfully by physicists since the original works by Dirac and by Bergmann. From a mathematical standpoint, several aspects of the theory have been exposed rigorously afterwards by many authors. However, many questions related to, for instance, singular or infinite dimensional cases remain open. The work of Gotay and Nester presents a mathematical generalization in terms of presymplectic geometry, which introduces a dual point of view. We present a study of the Dirac theory of constraints emphasizing the duality between the Poisson-algebraic and the geometric points of view, related respectively to the work of Dirac and of Gotay and Nester, under strong regularity conditions. We deal with some questions insufficiently treated in the literature: a study of uniqueness of solution; avoiding almost completely the use of coordinates; the role of the Pontryagin bundle. We also show how one can globalize some results usually treated locally in the literature. For instance, we introduce the globalnotion of second class submanifoldas being tangent to a second class subbundle. A general study of global results for Dirac and Gotay-Nester theories remains an open question in this theory.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/101465
url http://sedici.unlp.edu.ar/handle/10915/101465
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/79889
info:eu-repo/semantics/altIdentifier/url/https://www.ancefn.org.ar/contenido.asp?id=2302
info:eu-repo/semantics/altIdentifier/issn/0365-1185
info:eu-repo/semantics/altIdentifier/hdl/11336/79889
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
117-156
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616084625293312
score 13.070432