The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry

Autores
Cendra, Hernan; Etchechoury, María del Rosario; Ferraro, Sebastián José
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Dirac theory of constraints has been widely studied and applied very successfully by physicists since the original works by Dirac and by Bergmann. From a mathematical standpoint, several aspects of the theory have been exposed rigorously afterwards by many authors. However, many questions related to, for instance, singular or infinite dimensional cases remain open. The work of Gotay and Nester presents a mathematical generalization in terms of presymplectic geometry, which introduces a dual point of view. We present a study of the Dirac theory of constraints emphasizing the duality between the Poisson-algebraic and the geometric points of view, related respectively to the work of Dirac and of Gotay and Nester, under strong regularity conditions. We deal with some questions insufficiently treated in the literature: a study of uniqueness of solution; avoiding almost completely the use of coordinates; the role of the Pontryagin bundle. We also show how one can globalize some results usually treated locally in the literature. For instance, we introduce the globalnotion of second class submanifoldas being tangent to a second class subbundle. A general study of global results for Dirac and Gotay-Nester theories remains an open question in this theory.
La Teoría de ligaduras deDirac, lateoría de Gotay-Nester y geometría dePoissin. La teoría de Dirac ha sido ampliamente estudiada y aplicada muy exitosamente por los físicos desde los trabajos originales de Dirac y de Bergmann. Desde un punto de vista matemático, varios aspectos de la teoría han sido expuestos rigurosamente por varios autores. Sin embargo, aún quedan abiertas varias preguntas relacionadas, por ejemplo, con casos singulares o infinito-dimensionales. El trabajo de Gotay y Nester presenta una generalización matemática en términos de la geometría presimpléctica, lo cual introduce un punto de vista dual. Presentamos un estudio de la teoría de ligaduras de Dirac enfatizando la dualidad entre los puntos de vista de las álgebras de Poisson y de la geometría presimpléctica, relacionados respectivamente con los trabajos de Dirac y de Gotay-Nester, bajo condiciones de regularidad fuertes. Abordamos algunas cuestiones insuficientemente tratadas en la literatura: un estudio de la unicidad de solución; evitar casi completamente el uso de coordenadas; el rol del fibrado de Pontryagin. También mostramos cómo se pueden globalizar algunos resultados usualmente tratados localmente en la literatura. Por ejemplo, introducimos la noción globalde subvariedad de segunda clasecomo variedad tangente a un subfibrado de segunda clase. Un estudio general de resultados globales para las teorías de Dirac y de Gotay-Nester sigue siendo una pregunta abierta en esta teoría.
Fil: Cendra, Hernan. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Etchechoury, María del Rosario. Universidad Nacional de La Plata; Argentina
Fil: Ferraro, Sebastián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Materia
DIRAC´S THEORY OF CONSTRAINTS
POISSON GEOMETRY
PRESYMLECTIC MANIFOLDS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/79889

id CONICETDig_9aa675a5d736f3fed6f3b0c0fc412593
oai_identifier_str oai:ri.conicet.gov.ar:11336/79889
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometryCendra, HernanEtchechoury, María del RosarioFerraro, Sebastián JoséDIRAC´S THEORY OF CONSTRAINTSPOISSON GEOMETRYPRESYMLECTIC MANIFOLDShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The Dirac theory of constraints has been widely studied and applied very successfully by physicists since the original works by Dirac and by Bergmann. From a mathematical standpoint, several aspects of the theory have been exposed rigorously afterwards by many authors. However, many questions related to, for instance, singular or infinite dimensional cases remain open. The work of Gotay and Nester presents a mathematical generalization in terms of presymplectic geometry, which introduces a dual point of view. We present a study of the Dirac theory of constraints emphasizing the duality between the Poisson-algebraic and the geometric points of view, related respectively to the work of Dirac and of Gotay and Nester, under strong regularity conditions. We deal with some questions insufficiently treated in the literature: a study of uniqueness of solution; avoiding almost completely the use of coordinates; the role of the Pontryagin bundle. We also show how one can globalize some results usually treated locally in the literature. For instance, we introduce the globalnotion of second class submanifoldas being tangent to a second class subbundle. A general study of global results for Dirac and Gotay-Nester theories remains an open question in this theory.La Teoría de ligaduras deDirac, lateoría de Gotay-Nester y geometría dePoissin. La teoría de Dirac ha sido ampliamente estudiada y aplicada muy exitosamente por los físicos desde los trabajos originales de Dirac y de Bergmann. Desde un punto de vista matemático, varios aspectos de la teoría han sido expuestos rigurosamente por varios autores. Sin embargo, aún quedan abiertas varias preguntas relacionadas, por ejemplo, con casos singulares o infinito-dimensionales. El trabajo de Gotay y Nester presenta una generalización matemática en términos de la geometría presimpléctica, lo cual introduce un punto de vista dual. Presentamos un estudio de la teoría de ligaduras de Dirac enfatizando la dualidad entre los puntos de vista de las álgebras de Poisson y de la geometría presimpléctica, relacionados respectivamente con los trabajos de Dirac y de Gotay-Nester, bajo condiciones de regularidad fuertes. Abordamos algunas cuestiones insuficientemente tratadas en la literatura: un estudio de la unicidad de solución; evitar casi completamente el uso de coordenadas; el rol del fibrado de Pontryagin. También mostramos cómo se pueden globalizar algunos resultados usualmente tratados localmente en la literatura. Por ejemplo, introducimos la noción globalde subvariedad de segunda clasecomo variedad tangente a un subfibrado de segunda clase. Un estudio general de resultados globales para las teorías de Dirac y de Gotay-Nester sigue siendo una pregunta abierta en esta teoría.Fil: Cendra, Hernan. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: Etchechoury, María del Rosario. Universidad Nacional de La Plata; ArgentinaFil: Ferraro, Sebastián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaAcademia Nacional de Ciencias Exactas, Físicas y Naturales2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/79889Cendra, Hernan; Etchechoury, María del Rosario; Ferraro, Sebastián José; The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry; Academia Nacional de Ciencias Exactas, Físicas y Naturales; Anales de la Academia Nacional de Ciencias Exactas, Físicas y Naturales de Buenos Aires; 64; 2012; 117-1560365-1185CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ancefn.org.ar/contenido.asp?id=2302info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:30:17Zoai:ri.conicet.gov.ar:11336/79889instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:30:17.537CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry
title The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry
spellingShingle The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry
Cendra, Hernan
DIRAC´S THEORY OF CONSTRAINTS
POISSON GEOMETRY
PRESYMLECTIC MANIFOLDS
title_short The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry
title_full The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry
title_fullStr The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry
title_full_unstemmed The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry
title_sort The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry
dc.creator.none.fl_str_mv Cendra, Hernan
Etchechoury, María del Rosario
Ferraro, Sebastián José
author Cendra, Hernan
author_facet Cendra, Hernan
Etchechoury, María del Rosario
Ferraro, Sebastián José
author_role author
author2 Etchechoury, María del Rosario
Ferraro, Sebastián José
author2_role author
author
dc.subject.none.fl_str_mv DIRAC´S THEORY OF CONSTRAINTS
POISSON GEOMETRY
PRESYMLECTIC MANIFOLDS
topic DIRAC´S THEORY OF CONSTRAINTS
POISSON GEOMETRY
PRESYMLECTIC MANIFOLDS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The Dirac theory of constraints has been widely studied and applied very successfully by physicists since the original works by Dirac and by Bergmann. From a mathematical standpoint, several aspects of the theory have been exposed rigorously afterwards by many authors. However, many questions related to, for instance, singular or infinite dimensional cases remain open. The work of Gotay and Nester presents a mathematical generalization in terms of presymplectic geometry, which introduces a dual point of view. We present a study of the Dirac theory of constraints emphasizing the duality between the Poisson-algebraic and the geometric points of view, related respectively to the work of Dirac and of Gotay and Nester, under strong regularity conditions. We deal with some questions insufficiently treated in the literature: a study of uniqueness of solution; avoiding almost completely the use of coordinates; the role of the Pontryagin bundle. We also show how one can globalize some results usually treated locally in the literature. For instance, we introduce the globalnotion of second class submanifoldas being tangent to a second class subbundle. A general study of global results for Dirac and Gotay-Nester theories remains an open question in this theory.
La Teoría de ligaduras deDirac, lateoría de Gotay-Nester y geometría dePoissin. La teoría de Dirac ha sido ampliamente estudiada y aplicada muy exitosamente por los físicos desde los trabajos originales de Dirac y de Bergmann. Desde un punto de vista matemático, varios aspectos de la teoría han sido expuestos rigurosamente por varios autores. Sin embargo, aún quedan abiertas varias preguntas relacionadas, por ejemplo, con casos singulares o infinito-dimensionales. El trabajo de Gotay y Nester presenta una generalización matemática en términos de la geometría presimpléctica, lo cual introduce un punto de vista dual. Presentamos un estudio de la teoría de ligaduras de Dirac enfatizando la dualidad entre los puntos de vista de las álgebras de Poisson y de la geometría presimpléctica, relacionados respectivamente con los trabajos de Dirac y de Gotay-Nester, bajo condiciones de regularidad fuertes. Abordamos algunas cuestiones insuficientemente tratadas en la literatura: un estudio de la unicidad de solución; evitar casi completamente el uso de coordenadas; el rol del fibrado de Pontryagin. También mostramos cómo se pueden globalizar algunos resultados usualmente tratados localmente en la literatura. Por ejemplo, introducimos la noción globalde subvariedad de segunda clasecomo variedad tangente a un subfibrado de segunda clase. Un estudio general de resultados globales para las teorías de Dirac y de Gotay-Nester sigue siendo una pregunta abierta en esta teoría.
Fil: Cendra, Hernan. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Etchechoury, María del Rosario. Universidad Nacional de La Plata; Argentina
Fil: Ferraro, Sebastián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
description The Dirac theory of constraints has been widely studied and applied very successfully by physicists since the original works by Dirac and by Bergmann. From a mathematical standpoint, several aspects of the theory have been exposed rigorously afterwards by many authors. However, many questions related to, for instance, singular or infinite dimensional cases remain open. The work of Gotay and Nester presents a mathematical generalization in terms of presymplectic geometry, which introduces a dual point of view. We present a study of the Dirac theory of constraints emphasizing the duality between the Poisson-algebraic and the geometric points of view, related respectively to the work of Dirac and of Gotay and Nester, under strong regularity conditions. We deal with some questions insufficiently treated in the literature: a study of uniqueness of solution; avoiding almost completely the use of coordinates; the role of the Pontryagin bundle. We also show how one can globalize some results usually treated locally in the literature. For instance, we introduce the globalnotion of second class submanifoldas being tangent to a second class subbundle. A general study of global results for Dirac and Gotay-Nester theories remains an open question in this theory.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/79889
Cendra, Hernan; Etchechoury, María del Rosario; Ferraro, Sebastián José; The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry; Academia Nacional de Ciencias Exactas, Físicas y Naturales; Anales de la Academia Nacional de Ciencias Exactas, Físicas y Naturales de Buenos Aires; 64; 2012; 117-156
0365-1185
CONICET Digital
CONICET
url http://hdl.handle.net/11336/79889
identifier_str_mv Cendra, Hernan; Etchechoury, María del Rosario; Ferraro, Sebastián José; The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry; Academia Nacional de Ciencias Exactas, Físicas y Naturales; Anales de la Academia Nacional de Ciencias Exactas, Físicas y Naturales de Buenos Aires; 64; 2012; 117-156
0365-1185
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.ancefn.org.ar/contenido.asp?id=2302
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academia Nacional de Ciencias Exactas, Físicas y Naturales
publisher.none.fl_str_mv Academia Nacional de Ciencias Exactas, Físicas y Naturales
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614311093207040
score 13.070432