Optimizing Scorpion Toxin Processing through Artificial Intelligence
- Autores
- Psenicnik, Adam; Ojanguren Affilastro, Andres Alejandro; Graham, Matthew R.; Hassan, Mohamed K.; Abdel Rahman, Mohamed A.; Sharma, Prashant P.; Santibáñez López, Carlos E.
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Scorpion toxins are relatively short cyclic peptides (<150 amino acids) that can disrupt theopening/closing mechanisms in cell ion channels. These peptides are widely studied for severalreasons including their use in drug discovery. Although improvements in RNAseq have greatlyexpedited the discovery of new scorpion toxins, their annotation remains challenging, mainly due totheir small size. Here, we present a new pipeline to annotate toxins from scorpion transcriptomesusing a neural network approach. This pipeline implements basic neural networks to sort amino acidsequences to find those that are likely toxins and thereafter predict the type of toxin represented bythe sequence. We anticipate that this pipeline will accelerate the classification of scorpion toxins inforthcoming scorpion genome sequencing projects and potentially serve a useful role in identifyingtargets for drug development.
Fil: Psenicnik, Adam. Western Connecticut State University; Estados Unidos
Fil: Ojanguren Affilastro, Andres Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia". Departamento de Invertebrados. Area de Entomologia; Argentina
Fil: Graham, Matthew R.. Eastern Connecticut State University; Estados Unidos
Fil: Hassan, Mohamed K.. Port Said University; Egipto
Fil: Abdel Rahman, Mohamed A.. Suez Canal University; Egipto
Fil: Sharma, Prashant P.. University Of Wisconsin-madison; Estados Unidos
Fil: Santibáñez López, Carlos E.. Western Connecticut State University; Estados Unidos - Materia
-
Phyton
RNAseq
Sodium channel toxins
Neural network - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/263490
Ver los metadatos del registro completo
id |
CONICETDig_6ab3b91d0f7c3a00f3476dfdcc599bd4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/263490 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimizing Scorpion Toxin Processing through Artificial IntelligencePsenicnik, AdamOjanguren Affilastro, Andres AlejandroGraham, Matthew R.Hassan, Mohamed K.Abdel Rahman, Mohamed A.Sharma, Prashant P.Santibáñez López, Carlos E.PhytonRNAseqSodium channel toxinsNeural networkhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Scorpion toxins are relatively short cyclic peptides (<150 amino acids) that can disrupt theopening/closing mechanisms in cell ion channels. These peptides are widely studied for severalreasons including their use in drug discovery. Although improvements in RNAseq have greatlyexpedited the discovery of new scorpion toxins, their annotation remains challenging, mainly due totheir small size. Here, we present a new pipeline to annotate toxins from scorpion transcriptomesusing a neural network approach. This pipeline implements basic neural networks to sort amino acidsequences to find those that are likely toxins and thereafter predict the type of toxin represented bythe sequence. We anticipate that this pipeline will accelerate the classification of scorpion toxins inforthcoming scorpion genome sequencing projects and potentially serve a useful role in identifyingtargets for drug development.Fil: Psenicnik, Adam. Western Connecticut State University; Estados UnidosFil: Ojanguren Affilastro, Andres Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia". Departamento de Invertebrados. Area de Entomologia; ArgentinaFil: Graham, Matthew R.. Eastern Connecticut State University; Estados UnidosFil: Hassan, Mohamed K.. Port Said University; EgiptoFil: Abdel Rahman, Mohamed A.. Suez Canal University; EgiptoFil: Sharma, Prashant P.. University Of Wisconsin-madison; Estados UnidosFil: Santibáñez López, Carlos E.. Western Connecticut State University; Estados UnidosMDPI2024-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/263490Psenicnik, Adam; Ojanguren Affilastro, Andres Alejandro; Graham, Matthew R.; Hassan, Mohamed K.; Abdel Rahman, Mohamed A.; et al.; Optimizing Scorpion Toxin Processing through Artificial Intelligence; MDPI; Toxins; 16; 10; 10-2024; 1-122072-6651CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2072-6651/16/10/437info:eu-repo/semantics/altIdentifier/doi/10.3390/toxins16100437info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:12Zoai:ri.conicet.gov.ar:11336/263490instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:12.657CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimizing Scorpion Toxin Processing through Artificial Intelligence |
title |
Optimizing Scorpion Toxin Processing through Artificial Intelligence |
spellingShingle |
Optimizing Scorpion Toxin Processing through Artificial Intelligence Psenicnik, Adam Phyton RNAseq Sodium channel toxins Neural network |
title_short |
Optimizing Scorpion Toxin Processing through Artificial Intelligence |
title_full |
Optimizing Scorpion Toxin Processing through Artificial Intelligence |
title_fullStr |
Optimizing Scorpion Toxin Processing through Artificial Intelligence |
title_full_unstemmed |
Optimizing Scorpion Toxin Processing through Artificial Intelligence |
title_sort |
Optimizing Scorpion Toxin Processing through Artificial Intelligence |
dc.creator.none.fl_str_mv |
Psenicnik, Adam Ojanguren Affilastro, Andres Alejandro Graham, Matthew R. Hassan, Mohamed K. Abdel Rahman, Mohamed A. Sharma, Prashant P. Santibáñez López, Carlos E. |
author |
Psenicnik, Adam |
author_facet |
Psenicnik, Adam Ojanguren Affilastro, Andres Alejandro Graham, Matthew R. Hassan, Mohamed K. Abdel Rahman, Mohamed A. Sharma, Prashant P. Santibáñez López, Carlos E. |
author_role |
author |
author2 |
Ojanguren Affilastro, Andres Alejandro Graham, Matthew R. Hassan, Mohamed K. Abdel Rahman, Mohamed A. Sharma, Prashant P. Santibáñez López, Carlos E. |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Phyton RNAseq Sodium channel toxins Neural network |
topic |
Phyton RNAseq Sodium channel toxins Neural network |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Scorpion toxins are relatively short cyclic peptides (<150 amino acids) that can disrupt theopening/closing mechanisms in cell ion channels. These peptides are widely studied for severalreasons including their use in drug discovery. Although improvements in RNAseq have greatlyexpedited the discovery of new scorpion toxins, their annotation remains challenging, mainly due totheir small size. Here, we present a new pipeline to annotate toxins from scorpion transcriptomesusing a neural network approach. This pipeline implements basic neural networks to sort amino acidsequences to find those that are likely toxins and thereafter predict the type of toxin represented bythe sequence. We anticipate that this pipeline will accelerate the classification of scorpion toxins inforthcoming scorpion genome sequencing projects and potentially serve a useful role in identifyingtargets for drug development. Fil: Psenicnik, Adam. Western Connecticut State University; Estados Unidos Fil: Ojanguren Affilastro, Andres Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia". Departamento de Invertebrados. Area de Entomologia; Argentina Fil: Graham, Matthew R.. Eastern Connecticut State University; Estados Unidos Fil: Hassan, Mohamed K.. Port Said University; Egipto Fil: Abdel Rahman, Mohamed A.. Suez Canal University; Egipto Fil: Sharma, Prashant P.. University Of Wisconsin-madison; Estados Unidos Fil: Santibáñez López, Carlos E.. Western Connecticut State University; Estados Unidos |
description |
Scorpion toxins are relatively short cyclic peptides (<150 amino acids) that can disrupt theopening/closing mechanisms in cell ion channels. These peptides are widely studied for severalreasons including their use in drug discovery. Although improvements in RNAseq have greatlyexpedited the discovery of new scorpion toxins, their annotation remains challenging, mainly due totheir small size. Here, we present a new pipeline to annotate toxins from scorpion transcriptomesusing a neural network approach. This pipeline implements basic neural networks to sort amino acidsequences to find those that are likely toxins and thereafter predict the type of toxin represented bythe sequence. We anticipate that this pipeline will accelerate the classification of scorpion toxins inforthcoming scorpion genome sequencing projects and potentially serve a useful role in identifyingtargets for drug development. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/263490 Psenicnik, Adam; Ojanguren Affilastro, Andres Alejandro; Graham, Matthew R.; Hassan, Mohamed K.; Abdel Rahman, Mohamed A.; et al.; Optimizing Scorpion Toxin Processing through Artificial Intelligence; MDPI; Toxins; 16; 10; 10-2024; 1-12 2072-6651 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/263490 |
identifier_str_mv |
Psenicnik, Adam; Ojanguren Affilastro, Andres Alejandro; Graham, Matthew R.; Hassan, Mohamed K.; Abdel Rahman, Mohamed A.; et al.; Optimizing Scorpion Toxin Processing through Artificial Intelligence; MDPI; Toxins; 16; 10; 10-2024; 1-12 2072-6651 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2072-6651/16/10/437 info:eu-repo/semantics/altIdentifier/doi/10.3390/toxins16100437 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614454724001792 |
score |
13.070432 |