Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms
- Autores
- Wang, Shurun; Tang, Hao; Himeno, Ryutaro; Solé Casals, Jordi; Caiafa, César Federico; Han, Shuning; Aoki, Shigeki; Sun, Zhe
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background and Objective:The accurate diagnosis of schizophrenia spectrum disorder plays an important role in improving patient outcomes, enabling timely interventions, and optimizing treatment plans. Functional connectivity analysis, utilizing functional magnetic resonance imaging data, has been demonstrated to offer invaluable biomarkers conducive to clinical diagnosis. However, previous studies mainly focus on traditional machine learning methods or hand-crafted neural networks, which may not fully capture the spatial topological relationship between brain regions.Methods:This paper propose an evolutionary algorithm (EA) based graph neural architecture search (GNAS) method. EA-GNAS has the ability to search for high-performance graph neural networks for schizophrenia spectrum disorder prediction. Moreover, we adopt GNNExplainer to investigate the explainability of the acquired architectures, ensuring that the model’s predictions are both accurate and comprehensible.Results:The results suggest that the graph neural network model, derived using genetic algorithm search, outperforms under five-fold cross-validation, achieving a fitness of 0.1850. Relative to conventional machine learning and other deep learning approaches, the proposed method yields superior accuracy, F1 score, and AUC values of 0.8246, 0.8438, and 0.8258, respectively.Conclusion:Based on a multi-site dataset from schizophrenia spectrum disorder patients, the findings reveal an enhancement over prior methods, advancing our comprehension of brain function and potentially offering a biomarker for diagnosing schizophrenia spectrum disorder.
Fil: Wang, Shurun. Hefei University Of Technology; China
Fil: Tang, Hao. Hefei University Of Technology; China
Fil: Himeno, Ryutaro. Juntendo University; Japón
Fil: Solé Casals, Jordi. University of Vic; España
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Han, Shuning. ;
Fil: Aoki, Shigeki. Juntendo University; Japón
Fil: Sun, Zhe. Juntendo University; Japón - Materia
-
Graph Neural Network
Graph Neural Architecture Search
Evolutionary Algorithm
Squizophrenia - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/245841
Ver los metadatos del registro completo
id |
CONICETDig_4147752fb77e81d4187bda5a0029ded1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/245841 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithmsWang, ShurunTang, HaoHimeno, RyutaroSolé Casals, JordiCaiafa, César FedericoHan, ShuningAoki, ShigekiSun, ZheGraph Neural NetworkGraph Neural Architecture SearchEvolutionary AlgorithmSquizophreniahttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Background and Objective:The accurate diagnosis of schizophrenia spectrum disorder plays an important role in improving patient outcomes, enabling timely interventions, and optimizing treatment plans. Functional connectivity analysis, utilizing functional magnetic resonance imaging data, has been demonstrated to offer invaluable biomarkers conducive to clinical diagnosis. However, previous studies mainly focus on traditional machine learning methods or hand-crafted neural networks, which may not fully capture the spatial topological relationship between brain regions.Methods:This paper propose an evolutionary algorithm (EA) based graph neural architecture search (GNAS) method. EA-GNAS has the ability to search for high-performance graph neural networks for schizophrenia spectrum disorder prediction. Moreover, we adopt GNNExplainer to investigate the explainability of the acquired architectures, ensuring that the model’s predictions are both accurate and comprehensible.Results:The results suggest that the graph neural network model, derived using genetic algorithm search, outperforms under five-fold cross-validation, achieving a fitness of 0.1850. Relative to conventional machine learning and other deep learning approaches, the proposed method yields superior accuracy, F1 score, and AUC values of 0.8246, 0.8438, and 0.8258, respectively.Conclusion:Based on a multi-site dataset from schizophrenia spectrum disorder patients, the findings reveal an enhancement over prior methods, advancing our comprehension of brain function and potentially offering a biomarker for diagnosing schizophrenia spectrum disorder.Fil: Wang, Shurun. Hefei University Of Technology; ChinaFil: Tang, Hao. Hefei University Of Technology; ChinaFil: Himeno, Ryutaro. Juntendo University; JapónFil: Solé Casals, Jordi. University of Vic; EspañaFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Han, Shuning. ;Fil: Aoki, Shigeki. Juntendo University; JapónFil: Sun, Zhe. Juntendo University; JapónElsevier Ireland2024-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/245841Wang, Shurun; Tang, Hao; Himeno, Ryutaro; Solé Casals, Jordi; Caiafa, César Federico; et al.; Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms; Elsevier Ireland; Computer Methods And Programs In Biomedicine; 257; 9-2024; 108419, 1-280169-2607CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0169260724004127info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cmpb.2024.108419info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:05Zoai:ri.conicet.gov.ar:11336/245841instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:05.26CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms |
title |
Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms |
spellingShingle |
Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms Wang, Shurun Graph Neural Network Graph Neural Architecture Search Evolutionary Algorithm Squizophrenia |
title_short |
Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms |
title_full |
Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms |
title_fullStr |
Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms |
title_full_unstemmed |
Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms |
title_sort |
Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms |
dc.creator.none.fl_str_mv |
Wang, Shurun Tang, Hao Himeno, Ryutaro Solé Casals, Jordi Caiafa, César Federico Han, Shuning Aoki, Shigeki Sun, Zhe |
author |
Wang, Shurun |
author_facet |
Wang, Shurun Tang, Hao Himeno, Ryutaro Solé Casals, Jordi Caiafa, César Federico Han, Shuning Aoki, Shigeki Sun, Zhe |
author_role |
author |
author2 |
Tang, Hao Himeno, Ryutaro Solé Casals, Jordi Caiafa, César Federico Han, Shuning Aoki, Shigeki Sun, Zhe |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Graph Neural Network Graph Neural Architecture Search Evolutionary Algorithm Squizophrenia |
topic |
Graph Neural Network Graph Neural Architecture Search Evolutionary Algorithm Squizophrenia |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Background and Objective:The accurate diagnosis of schizophrenia spectrum disorder plays an important role in improving patient outcomes, enabling timely interventions, and optimizing treatment plans. Functional connectivity analysis, utilizing functional magnetic resonance imaging data, has been demonstrated to offer invaluable biomarkers conducive to clinical diagnosis. However, previous studies mainly focus on traditional machine learning methods or hand-crafted neural networks, which may not fully capture the spatial topological relationship between brain regions.Methods:This paper propose an evolutionary algorithm (EA) based graph neural architecture search (GNAS) method. EA-GNAS has the ability to search for high-performance graph neural networks for schizophrenia spectrum disorder prediction. Moreover, we adopt GNNExplainer to investigate the explainability of the acquired architectures, ensuring that the model’s predictions are both accurate and comprehensible.Results:The results suggest that the graph neural network model, derived using genetic algorithm search, outperforms under five-fold cross-validation, achieving a fitness of 0.1850. Relative to conventional machine learning and other deep learning approaches, the proposed method yields superior accuracy, F1 score, and AUC values of 0.8246, 0.8438, and 0.8258, respectively.Conclusion:Based on a multi-site dataset from schizophrenia spectrum disorder patients, the findings reveal an enhancement over prior methods, advancing our comprehension of brain function and potentially offering a biomarker for diagnosing schizophrenia spectrum disorder. Fil: Wang, Shurun. Hefei University Of Technology; China Fil: Tang, Hao. Hefei University Of Technology; China Fil: Himeno, Ryutaro. Juntendo University; Japón Fil: Solé Casals, Jordi. University of Vic; España Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina Fil: Han, Shuning. ; Fil: Aoki, Shigeki. Juntendo University; Japón Fil: Sun, Zhe. Juntendo University; Japón |
description |
Background and Objective:The accurate diagnosis of schizophrenia spectrum disorder plays an important role in improving patient outcomes, enabling timely interventions, and optimizing treatment plans. Functional connectivity analysis, utilizing functional magnetic resonance imaging data, has been demonstrated to offer invaluable biomarkers conducive to clinical diagnosis. However, previous studies mainly focus on traditional machine learning methods or hand-crafted neural networks, which may not fully capture the spatial topological relationship between brain regions.Methods:This paper propose an evolutionary algorithm (EA) based graph neural architecture search (GNAS) method. EA-GNAS has the ability to search for high-performance graph neural networks for schizophrenia spectrum disorder prediction. Moreover, we adopt GNNExplainer to investigate the explainability of the acquired architectures, ensuring that the model’s predictions are both accurate and comprehensible.Results:The results suggest that the graph neural network model, derived using genetic algorithm search, outperforms under five-fold cross-validation, achieving a fitness of 0.1850. Relative to conventional machine learning and other deep learning approaches, the proposed method yields superior accuracy, F1 score, and AUC values of 0.8246, 0.8438, and 0.8258, respectively.Conclusion:Based on a multi-site dataset from schizophrenia spectrum disorder patients, the findings reveal an enhancement over prior methods, advancing our comprehension of brain function and potentially offering a biomarker for diagnosing schizophrenia spectrum disorder. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/245841 Wang, Shurun; Tang, Hao; Himeno, Ryutaro; Solé Casals, Jordi; Caiafa, César Federico; et al.; Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms; Elsevier Ireland; Computer Methods And Programs In Biomedicine; 257; 9-2024; 108419, 1-28 0169-2607 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/245841 |
identifier_str_mv |
Wang, Shurun; Tang, Hao; Himeno, Ryutaro; Solé Casals, Jordi; Caiafa, César Federico; et al.; Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms; Elsevier Ireland; Computer Methods And Programs In Biomedicine; 257; 9-2024; 108419, 1-28 0169-2607 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0169260724004127 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cmpb.2024.108419 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Ireland |
publisher.none.fl_str_mv |
Elsevier Ireland |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270030401634304 |
score |
13.13397 |