Singularities of logarithmic foliations

Autores
Cukierman, F.; Soares, M.G.; Vainsencher, I.
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A logarithmic 1-form on ℂℙn can be written as ω = (Π0m Fj) ∑0m λi dFi/Fi = λ0F̂ 0dF0 +⋯+ λmF̂ mdFm with F̂i = (Π0 m Fj)/Fi for some homogeneous polynomials Fi of degree di and constants λi ∈ ℂ* such that ∑ λidi = 0. For general Fi, λi, the singularities of ω consist of a schematic union of the codimension 2 subvarieties Fi = Fj = 0 together with, possibly, finitely many isolated points. This is the case when all Fi are smooth and in general position. In this situation, we give a formula which prescribes the number of isolated singularities. © Foundation Compositio Mathematica 2006.
Fil:Cukierman, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Compos. Math. 2006;142(1):131-142
Materia
Characteristic classes
Excess intersection
Holomorphic foliations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0010437X_v142_n1_p131_Cukierman

id BDUBAFCEN_9ffa8e1fc2352073377f918c14b3899d
oai_identifier_str paperaa:paper_0010437X_v142_n1_p131_Cukierman
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Singularities of logarithmic foliationsCukierman, F.Soares, M.G.Vainsencher, I.Characteristic classesExcess intersectionHolomorphic foliationsA logarithmic 1-form on ℂℙn can be written as ω = (Π0m Fj) ∑0m λi dFi/Fi = λ0F̂ 0dF0 +⋯+ λmF̂ mdFm with F̂i = (Π0 m Fj)/Fi for some homogeneous polynomials Fi of degree di and constants λi ∈ ℂ* such that ∑ λidi = 0. For general Fi, λi, the singularities of ω consist of a schematic union of the codimension 2 subvarieties Fi = Fj = 0 together with, possibly, finitely many isolated points. This is the case when all Fi are smooth and in general position. In this situation, we give a formula which prescribes the number of isolated singularities. © Foundation Compositio Mathematica 2006.Fil:Cukierman, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0010437X_v142_n1_p131_CukiermanCompos. Math. 2006;142(1):131-142reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:06Zpaperaa:paper_0010437X_v142_n1_p131_CukiermanInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:07.392Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Singularities of logarithmic foliations
title Singularities of logarithmic foliations
spellingShingle Singularities of logarithmic foliations
Cukierman, F.
Characteristic classes
Excess intersection
Holomorphic foliations
title_short Singularities of logarithmic foliations
title_full Singularities of logarithmic foliations
title_fullStr Singularities of logarithmic foliations
title_full_unstemmed Singularities of logarithmic foliations
title_sort Singularities of logarithmic foliations
dc.creator.none.fl_str_mv Cukierman, F.
Soares, M.G.
Vainsencher, I.
author Cukierman, F.
author_facet Cukierman, F.
Soares, M.G.
Vainsencher, I.
author_role author
author2 Soares, M.G.
Vainsencher, I.
author2_role author
author
dc.subject.none.fl_str_mv Characteristic classes
Excess intersection
Holomorphic foliations
topic Characteristic classes
Excess intersection
Holomorphic foliations
dc.description.none.fl_txt_mv A logarithmic 1-form on ℂℙn can be written as ω = (Π0m Fj) ∑0m λi dFi/Fi = λ0F̂ 0dF0 +⋯+ λmF̂ mdFm with F̂i = (Π0 m Fj)/Fi for some homogeneous polynomials Fi of degree di and constants λi ∈ ℂ* such that ∑ λidi = 0. For general Fi, λi, the singularities of ω consist of a schematic union of the codimension 2 subvarieties Fi = Fj = 0 together with, possibly, finitely many isolated points. This is the case when all Fi are smooth and in general position. In this situation, we give a formula which prescribes the number of isolated singularities. © Foundation Compositio Mathematica 2006.
Fil:Cukierman, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description A logarithmic 1-form on ℂℙn can be written as ω = (Π0m Fj) ∑0m λi dFi/Fi = λ0F̂ 0dF0 +⋯+ λmF̂ mdFm with F̂i = (Π0 m Fj)/Fi for some homogeneous polynomials Fi of degree di and constants λi ∈ ℂ* such that ∑ λidi = 0. For general Fi, λi, the singularities of ω consist of a schematic union of the codimension 2 subvarieties Fi = Fj = 0 together with, possibly, finitely many isolated points. This is the case when all Fi are smooth and in general position. In this situation, we give a formula which prescribes the number of isolated singularities. © Foundation Compositio Mathematica 2006.
publishDate 2006
dc.date.none.fl_str_mv 2006
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0010437X_v142_n1_p131_Cukierman
url http://hdl.handle.net/20.500.12110/paper_0010437X_v142_n1_p131_Cukierman
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Compos. Math. 2006;142(1):131-142
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618739493896192
score 13.070432