Singularities of logarithmic foliations
- Autores
- Cukierman, F.; Soares, M.G.; Vainsencher, I.
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A logarithmic 1-form on ℂℙn can be written as ω = (Π0m Fj) ∑0m λi dFi/Fi = λ0F̂ 0dF0 +⋯+ λmF̂ mdFm with F̂i = (Π0 m Fj)/Fi for some homogeneous polynomials Fi of degree di and constants λi ∈ ℂ* such that ∑ λidi = 0. For general Fi, λi, the singularities of ω consist of a schematic union of the codimension 2 subvarieties Fi = Fj = 0 together with, possibly, finitely many isolated points. This is the case when all Fi are smooth and in general position. In this situation, we give a formula which prescribes the number of isolated singularities. © Foundation Compositio Mathematica 2006.
Fil:Cukierman, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Compos. Math. 2006;142(1):131-142
- Materia
-
Characteristic classes
Excess intersection
Holomorphic foliations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0010437X_v142_n1_p131_Cukierman
Ver los metadatos del registro completo
id |
BDUBAFCEN_9ffa8e1fc2352073377f918c14b3899d |
---|---|
oai_identifier_str |
paperaa:paper_0010437X_v142_n1_p131_Cukierman |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Singularities of logarithmic foliationsCukierman, F.Soares, M.G.Vainsencher, I.Characteristic classesExcess intersectionHolomorphic foliationsA logarithmic 1-form on ℂℙn can be written as ω = (Π0m Fj) ∑0m λi dFi/Fi = λ0F̂ 0dF0 +⋯+ λmF̂ mdFm with F̂i = (Π0 m Fj)/Fi for some homogeneous polynomials Fi of degree di and constants λi ∈ ℂ* such that ∑ λidi = 0. For general Fi, λi, the singularities of ω consist of a schematic union of the codimension 2 subvarieties Fi = Fj = 0 together with, possibly, finitely many isolated points. This is the case when all Fi are smooth and in general position. In this situation, we give a formula which prescribes the number of isolated singularities. © Foundation Compositio Mathematica 2006.Fil:Cukierman, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0010437X_v142_n1_p131_CukiermanCompos. Math. 2006;142(1):131-142reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:06Zpaperaa:paper_0010437X_v142_n1_p131_CukiermanInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:07.392Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Singularities of logarithmic foliations |
title |
Singularities of logarithmic foliations |
spellingShingle |
Singularities of logarithmic foliations Cukierman, F. Characteristic classes Excess intersection Holomorphic foliations |
title_short |
Singularities of logarithmic foliations |
title_full |
Singularities of logarithmic foliations |
title_fullStr |
Singularities of logarithmic foliations |
title_full_unstemmed |
Singularities of logarithmic foliations |
title_sort |
Singularities of logarithmic foliations |
dc.creator.none.fl_str_mv |
Cukierman, F. Soares, M.G. Vainsencher, I. |
author |
Cukierman, F. |
author_facet |
Cukierman, F. Soares, M.G. Vainsencher, I. |
author_role |
author |
author2 |
Soares, M.G. Vainsencher, I. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Characteristic classes Excess intersection Holomorphic foliations |
topic |
Characteristic classes Excess intersection Holomorphic foliations |
dc.description.none.fl_txt_mv |
A logarithmic 1-form on ℂℙn can be written as ω = (Π0m Fj) ∑0m λi dFi/Fi = λ0F̂ 0dF0 +⋯+ λmF̂ mdFm with F̂i = (Π0 m Fj)/Fi for some homogeneous polynomials Fi of degree di and constants λi ∈ ℂ* such that ∑ λidi = 0. For general Fi, λi, the singularities of ω consist of a schematic union of the codimension 2 subvarieties Fi = Fj = 0 together with, possibly, finitely many isolated points. This is the case when all Fi are smooth and in general position. In this situation, we give a formula which prescribes the number of isolated singularities. © Foundation Compositio Mathematica 2006. Fil:Cukierman, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
A logarithmic 1-form on ℂℙn can be written as ω = (Π0m Fj) ∑0m λi dFi/Fi = λ0F̂ 0dF0 +⋯+ λmF̂ mdFm with F̂i = (Π0 m Fj)/Fi for some homogeneous polynomials Fi of degree di and constants λi ∈ ℂ* such that ∑ λidi = 0. For general Fi, λi, the singularities of ω consist of a schematic union of the codimension 2 subvarieties Fi = Fj = 0 together with, possibly, finitely many isolated points. This is the case when all Fi are smooth and in general position. In this situation, we give a formula which prescribes the number of isolated singularities. © Foundation Compositio Mathematica 2006. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0010437X_v142_n1_p131_Cukierman |
url |
http://hdl.handle.net/20.500.12110/paper_0010437X_v142_n1_p131_Cukierman |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Compos. Math. 2006;142(1):131-142 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618739493896192 |
score |
13.070432 |