Prediction of wind pressure coefficients on building surfaces using artificial neural networks
- Autores
- Bre, Facundo; Gimenez, Juan Marcelo; Fachinotti, Victor Daniel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Knowing the pressure coefficient on building surfaces is important for the evaluation of wind loads and natural ventilation. The main objective of this paper is to present and to validate a computational modeling approach to accurately predict the mean wind pressure coefficient on the surfaces of flat-, gable- and hip-roofed rectangular buildings. This approach makes use of artificial neural network (ANN) to estimate the surface-average pressure coefficient for each wall and roof according to the building geometry and the wind angle. Three separate ANN models were developed, one for each roof type, and trained using an experimental database. Applied to a wide variety of buildings, the current ANN models were proved to be considerably more accurate than the commonly used parametric equations for the estimation of pressure coefficients. The proposed ANN-based methodology is as general and versatile as to be easily expanded to buildings with different shapes as well as to be coupled to building performance simulation and airflow network programs.
Fil: Bre, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Gimenez, Juan Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Fachinotti, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina - Materia
-
ARTIFICIAL NEURAL NETWORK
BUILDING PERFORMANCE SIMULATION
NATURAL VENTILATION
PRESSURE COEFFICIENT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/86215
Ver los metadatos del registro completo
id |
CONICETDig_dd0467f5a9c247f91905eedb8a503ef3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/86215 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Prediction of wind pressure coefficients on building surfaces using artificial neural networksBre, FacundoGimenez, Juan MarceloFachinotti, Victor DanielARTIFICIAL NEURAL NETWORKBUILDING PERFORMANCE SIMULATIONNATURAL VENTILATIONPRESSURE COEFFICIENThttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Knowing the pressure coefficient on building surfaces is important for the evaluation of wind loads and natural ventilation. The main objective of this paper is to present and to validate a computational modeling approach to accurately predict the mean wind pressure coefficient on the surfaces of flat-, gable- and hip-roofed rectangular buildings. This approach makes use of artificial neural network (ANN) to estimate the surface-average pressure coefficient for each wall and roof according to the building geometry and the wind angle. Three separate ANN models were developed, one for each roof type, and trained using an experimental database. Applied to a wide variety of buildings, the current ANN models were proved to be considerably more accurate than the commonly used parametric equations for the estimation of pressure coefficients. The proposed ANN-based methodology is as general and versatile as to be easily expanded to buildings with different shapes as well as to be coupled to building performance simulation and airflow network programs.Fil: Bre, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Gimenez, Juan Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Fachinotti, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaElsevier Science Sa2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/86215Bre, Facundo; Gimenez, Juan Marcelo; Fachinotti, Victor Daniel; Prediction of wind pressure coefficients on building surfaces using artificial neural networks; Elsevier Science Sa; Energy and Buildings; 158; 1-2018; 1429-14410378-7788CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.enbuild.2017.11.045info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378778817325501info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:13:52Zoai:ri.conicet.gov.ar:11336/86215instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:13:53.191CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Prediction of wind pressure coefficients on building surfaces using artificial neural networks |
title |
Prediction of wind pressure coefficients on building surfaces using artificial neural networks |
spellingShingle |
Prediction of wind pressure coefficients on building surfaces using artificial neural networks Bre, Facundo ARTIFICIAL NEURAL NETWORK BUILDING PERFORMANCE SIMULATION NATURAL VENTILATION PRESSURE COEFFICIENT |
title_short |
Prediction of wind pressure coefficients on building surfaces using artificial neural networks |
title_full |
Prediction of wind pressure coefficients on building surfaces using artificial neural networks |
title_fullStr |
Prediction of wind pressure coefficients on building surfaces using artificial neural networks |
title_full_unstemmed |
Prediction of wind pressure coefficients on building surfaces using artificial neural networks |
title_sort |
Prediction of wind pressure coefficients on building surfaces using artificial neural networks |
dc.creator.none.fl_str_mv |
Bre, Facundo Gimenez, Juan Marcelo Fachinotti, Victor Daniel |
author |
Bre, Facundo |
author_facet |
Bre, Facundo Gimenez, Juan Marcelo Fachinotti, Victor Daniel |
author_role |
author |
author2 |
Gimenez, Juan Marcelo Fachinotti, Victor Daniel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ARTIFICIAL NEURAL NETWORK BUILDING PERFORMANCE SIMULATION NATURAL VENTILATION PRESSURE COEFFICIENT |
topic |
ARTIFICIAL NEURAL NETWORK BUILDING PERFORMANCE SIMULATION NATURAL VENTILATION PRESSURE COEFFICIENT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.1 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Knowing the pressure coefficient on building surfaces is important for the evaluation of wind loads and natural ventilation. The main objective of this paper is to present and to validate a computational modeling approach to accurately predict the mean wind pressure coefficient on the surfaces of flat-, gable- and hip-roofed rectangular buildings. This approach makes use of artificial neural network (ANN) to estimate the surface-average pressure coefficient for each wall and roof according to the building geometry and the wind angle. Three separate ANN models were developed, one for each roof type, and trained using an experimental database. Applied to a wide variety of buildings, the current ANN models were proved to be considerably more accurate than the commonly used parametric equations for the estimation of pressure coefficients. The proposed ANN-based methodology is as general and versatile as to be easily expanded to buildings with different shapes as well as to be coupled to building performance simulation and airflow network programs. Fil: Bre, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Gimenez, Juan Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Fachinotti, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina |
description |
Knowing the pressure coefficient on building surfaces is important for the evaluation of wind loads and natural ventilation. The main objective of this paper is to present and to validate a computational modeling approach to accurately predict the mean wind pressure coefficient on the surfaces of flat-, gable- and hip-roofed rectangular buildings. This approach makes use of artificial neural network (ANN) to estimate the surface-average pressure coefficient for each wall and roof according to the building geometry and the wind angle. Three separate ANN models were developed, one for each roof type, and trained using an experimental database. Applied to a wide variety of buildings, the current ANN models were proved to be considerably more accurate than the commonly used parametric equations for the estimation of pressure coefficients. The proposed ANN-based methodology is as general and versatile as to be easily expanded to buildings with different shapes as well as to be coupled to building performance simulation and airflow network programs. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/86215 Bre, Facundo; Gimenez, Juan Marcelo; Fachinotti, Victor Daniel; Prediction of wind pressure coefficients on building surfaces using artificial neural networks; Elsevier Science Sa; Energy and Buildings; 158; 1-2018; 1429-1441 0378-7788 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/86215 |
identifier_str_mv |
Bre, Facundo; Gimenez, Juan Marcelo; Fachinotti, Victor Daniel; Prediction of wind pressure coefficients on building surfaces using artificial neural networks; Elsevier Science Sa; Energy and Buildings; 158; 1-2018; 1429-1441 0378-7788 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.enbuild.2017.11.045 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378778817325501 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Sa |
publisher.none.fl_str_mv |
Elsevier Science Sa |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781552533438464 |
score |
12.982451 |