A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains
- Autores
- Sanchez Fernandez de la Vega, Constanza Mariel; de Teresa, Luz; Torres, Pablo Andres
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This article presents a new Carleman inequality for a linear Schrödinger equation which is suitable for both bounded and unbounded domains. We characterize the conditions on the auxiliary function necessary to obtain the global inequality. The novelty of this result is the construction of the auxiliary function on some unbounded domains and for a corresponding valid control region ω. As a consequence, we prove some results on the controllability of a linear Schrödinger equation on unbounded domains.
Fil: Sanchez Fernandez de la Vega, Constanza Mariel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
Fil: de Teresa, Luz. Universidad Nacional Autónoma de México; México
Fil: Torres, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
CARLEMAN INEQUALITIES
CONTROLLABILITY
SCHRÖDINGER EQUATION
UNBOUNDED DOMAINS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/204062
Ver los metadatos del registro completo
id |
CONICETDig_885adefaca504d440673e34184e26f35 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/204062 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded DomainsSanchez Fernandez de la Vega, Constanza Marielde Teresa, LuzTorres, Pablo AndresCARLEMAN INEQUALITIESCONTROLLABILITYSCHRÖDINGER EQUATIONUNBOUNDED DOMAINShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This article presents a new Carleman inequality for a linear Schrödinger equation which is suitable for both bounded and unbounded domains. We characterize the conditions on the auxiliary function necessary to obtain the global inequality. The novelty of this result is the construction of the auxiliary function on some unbounded domains and for a corresponding valid control region ω. As a consequence, we prove some results on the controllability of a linear Schrödinger equation on unbounded domains.Fil: Sanchez Fernandez de la Vega, Constanza Mariel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; ArgentinaFil: de Teresa, Luz. Universidad Nacional Autónoma de México; MéxicoFil: Torres, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/204062Sanchez Fernandez de la Vega, Constanza Mariel; de Teresa, Luz; Torres, Pablo Andres; A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains; Springer; Applied Mathematics And Optimization; 87; 1; 2-2023; 1-180095-4616CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00245-022-09922-8info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00245-022-09922-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:05Zoai:ri.conicet.gov.ar:11336/204062instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:06.174CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains |
title |
A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains |
spellingShingle |
A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains Sanchez Fernandez de la Vega, Constanza Mariel CARLEMAN INEQUALITIES CONTROLLABILITY SCHRÖDINGER EQUATION UNBOUNDED DOMAINS |
title_short |
A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains |
title_full |
A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains |
title_fullStr |
A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains |
title_full_unstemmed |
A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains |
title_sort |
A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains |
dc.creator.none.fl_str_mv |
Sanchez Fernandez de la Vega, Constanza Mariel de Teresa, Luz Torres, Pablo Andres |
author |
Sanchez Fernandez de la Vega, Constanza Mariel |
author_facet |
Sanchez Fernandez de la Vega, Constanza Mariel de Teresa, Luz Torres, Pablo Andres |
author_role |
author |
author2 |
de Teresa, Luz Torres, Pablo Andres |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CARLEMAN INEQUALITIES CONTROLLABILITY SCHRÖDINGER EQUATION UNBOUNDED DOMAINS |
topic |
CARLEMAN INEQUALITIES CONTROLLABILITY SCHRÖDINGER EQUATION UNBOUNDED DOMAINS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This article presents a new Carleman inequality for a linear Schrödinger equation which is suitable for both bounded and unbounded domains. We characterize the conditions on the auxiliary function necessary to obtain the global inequality. The novelty of this result is the construction of the auxiliary function on some unbounded domains and for a corresponding valid control region ω. As a consequence, we prove some results on the controllability of a linear Schrödinger equation on unbounded domains. Fil: Sanchez Fernandez de la Vega, Constanza Mariel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina Fil: de Teresa, Luz. Universidad Nacional Autónoma de México; México Fil: Torres, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
This article presents a new Carleman inequality for a linear Schrödinger equation which is suitable for both bounded and unbounded domains. We characterize the conditions on the auxiliary function necessary to obtain the global inequality. The novelty of this result is the construction of the auxiliary function on some unbounded domains and for a corresponding valid control region ω. As a consequence, we prove some results on the controllability of a linear Schrödinger equation on unbounded domains. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/204062 Sanchez Fernandez de la Vega, Constanza Mariel; de Teresa, Luz; Torres, Pablo Andres; A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains; Springer; Applied Mathematics And Optimization; 87; 1; 2-2023; 1-18 0095-4616 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/204062 |
identifier_str_mv |
Sanchez Fernandez de la Vega, Constanza Mariel; de Teresa, Luz; Torres, Pablo Andres; A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains; Springer; Applied Mathematics And Optimization; 87; 1; 2-2023; 1-18 0095-4616 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00245-022-09922-8 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00245-022-09922-8 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269201399545856 |
score |
13.13397 |