A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains

Autores
Sanchez Fernandez de la Vega, Constanza Mariel; de Teresa, Luz; Torres, Pablo Andres
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This article presents a new Carleman inequality for a linear Schrödinger equation which is suitable for both bounded and unbounded domains. We characterize the conditions on the auxiliary function necessary to obtain the global inequality. The novelty of this result is the construction of the auxiliary function on some unbounded domains and for a corresponding valid control region ω. As a consequence, we prove some results on the controllability of a linear Schrödinger equation on unbounded domains.
Fil: Sanchez Fernandez de la Vega, Constanza Mariel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
Fil: de Teresa, Luz. Universidad Nacional Autónoma de México; México
Fil: Torres, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
CARLEMAN INEQUALITIES
CONTROLLABILITY
SCHRÖDINGER EQUATION
UNBOUNDED DOMAINS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/204062

id CONICETDig_885adefaca504d440673e34184e26f35
oai_identifier_str oai:ri.conicet.gov.ar:11336/204062
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded DomainsSanchez Fernandez de la Vega, Constanza Marielde Teresa, LuzTorres, Pablo AndresCARLEMAN INEQUALITIESCONTROLLABILITYSCHRÖDINGER EQUATIONUNBOUNDED DOMAINShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This article presents a new Carleman inequality for a linear Schrödinger equation which is suitable for both bounded and unbounded domains. We characterize the conditions on the auxiliary function necessary to obtain the global inequality. The novelty of this result is the construction of the auxiliary function on some unbounded domains and for a corresponding valid control region ω. As a consequence, we prove some results on the controllability of a linear Schrödinger equation on unbounded domains.Fil: Sanchez Fernandez de la Vega, Constanza Mariel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; ArgentinaFil: de Teresa, Luz. Universidad Nacional Autónoma de México; MéxicoFil: Torres, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/204062Sanchez Fernandez de la Vega, Constanza Mariel; de Teresa, Luz; Torres, Pablo Andres; A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains; Springer; Applied Mathematics And Optimization; 87; 1; 2-2023; 1-180095-4616CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00245-022-09922-8info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00245-022-09922-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:05Zoai:ri.conicet.gov.ar:11336/204062instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:06.174CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains
title A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains
spellingShingle A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains
Sanchez Fernandez de la Vega, Constanza Mariel
CARLEMAN INEQUALITIES
CONTROLLABILITY
SCHRÖDINGER EQUATION
UNBOUNDED DOMAINS
title_short A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains
title_full A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains
title_fullStr A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains
title_full_unstemmed A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains
title_sort A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains
dc.creator.none.fl_str_mv Sanchez Fernandez de la Vega, Constanza Mariel
de Teresa, Luz
Torres, Pablo Andres
author Sanchez Fernandez de la Vega, Constanza Mariel
author_facet Sanchez Fernandez de la Vega, Constanza Mariel
de Teresa, Luz
Torres, Pablo Andres
author_role author
author2 de Teresa, Luz
Torres, Pablo Andres
author2_role author
author
dc.subject.none.fl_str_mv CARLEMAN INEQUALITIES
CONTROLLABILITY
SCHRÖDINGER EQUATION
UNBOUNDED DOMAINS
topic CARLEMAN INEQUALITIES
CONTROLLABILITY
SCHRÖDINGER EQUATION
UNBOUNDED DOMAINS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This article presents a new Carleman inequality for a linear Schrödinger equation which is suitable for both bounded and unbounded domains. We characterize the conditions on the auxiliary function necessary to obtain the global inequality. The novelty of this result is the construction of the auxiliary function on some unbounded domains and for a corresponding valid control region ω. As a consequence, we prove some results on the controllability of a linear Schrödinger equation on unbounded domains.
Fil: Sanchez Fernandez de la Vega, Constanza Mariel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
Fil: de Teresa, Luz. Universidad Nacional Autónoma de México; México
Fil: Torres, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description This article presents a new Carleman inequality for a linear Schrödinger equation which is suitable for both bounded and unbounded domains. We characterize the conditions on the auxiliary function necessary to obtain the global inequality. The novelty of this result is the construction of the auxiliary function on some unbounded domains and for a corresponding valid control region ω. As a consequence, we prove some results on the controllability of a linear Schrödinger equation on unbounded domains.
publishDate 2023
dc.date.none.fl_str_mv 2023-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/204062
Sanchez Fernandez de la Vega, Constanza Mariel; de Teresa, Luz; Torres, Pablo Andres; A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains; Springer; Applied Mathematics And Optimization; 87; 1; 2-2023; 1-18
0095-4616
CONICET Digital
CONICET
url http://hdl.handle.net/11336/204062
identifier_str_mv Sanchez Fernandez de la Vega, Constanza Mariel; de Teresa, Luz; Torres, Pablo Andres; A New Carleman Inequality for a Linear Schrödinger Equation on Some Unbounded Domains; Springer; Applied Mathematics And Optimization; 87; 1; 2-2023; 1-18
0095-4616
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s00245-022-09922-8
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00245-022-09922-8
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269201399545856
score 13.13397