Quasi-stationary states of the NRT nonlinear Schroedinger equation

Autores
Toranzo, I. V.; Plastino, Ángel Ricardo; Dehesa, J.S.; Plastino, Ángel Luis
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
With regards to the nonlinear Schrödinger equation recently advanced by Nobre, Rego-Monteiro, and Tsallis (NRT), based on Tsallis q-thermo-statistical formalism, we investigate the existence and properties of its quasi-stationary solutions, which have the time and space dependences separated in a q-deformed fashion. One recovers the normal factorization into purely spatial and purely temporal factors, corresponding to the standard, linear Schrödinger equation, when the deformation vanishes (q = 1). We discuss various specific examples of exact, quasi-stationary solutions of the NRT equation. In particular, we obtain a quasi-stationary solution for the Moshinsky model, providing the first example of an exact solution of the NRT equation for a system of interacting particles.
Fil: Toranzo, I. V.. Universidad de Granada; España
Fil: Plastino, Ángel Ricardo. Universidad de Granada; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina
Fil: Dehesa, J.S.. Universidad de Granada; España
Fil: Plastino, Ángel Luis. Universidad de Granada; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Materia
Nonlinear Schrödinger Equation
Quasi Stationary States
Tsallis Thermostatistics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/24235

id CONICETDig_fc09511557a229d274a2be386b80f8d3
oai_identifier_str oai:ri.conicet.gov.ar:11336/24235
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Quasi-stationary states of the NRT nonlinear Schroedinger equationToranzo, I. V.Plastino, Ángel RicardoDehesa, J.S.Plastino, Ángel LuisNonlinear Schrödinger EquationQuasi Stationary StatesTsallis Thermostatisticshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1With regards to the nonlinear Schrödinger equation recently advanced by Nobre, Rego-Monteiro, and Tsallis (NRT), based on Tsallis q-thermo-statistical formalism, we investigate the existence and properties of its quasi-stationary solutions, which have the time and space dependences separated in a q-deformed fashion. One recovers the normal factorization into purely spatial and purely temporal factors, corresponding to the standard, linear Schrödinger equation, when the deformation vanishes (q = 1). We discuss various specific examples of exact, quasi-stationary solutions of the NRT equation. In particular, we obtain a quasi-stationary solution for the Moshinsky model, providing the first example of an exact solution of the NRT equation for a system of interacting particles.Fil: Toranzo, I. V.. Universidad de Granada; EspañaFil: Plastino, Ángel Ricardo. Universidad de Granada; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Dehesa, J.S.. Universidad de Granada; EspañaFil: Plastino, Ángel Luis. Universidad de Granada; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaElsevier Science2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/24235Toranzo, I. V.; Plastino, Ángel Ricardo; Dehesa, J.S.; Plastino, Ángel Luis; Quasi-stationary states of the NRT nonlinear Schroedinger equation; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 392; 5-2013; 3945-39510378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113003476info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2013.04.034info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:36Zoai:ri.conicet.gov.ar:11336/24235instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:36.39CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Quasi-stationary states of the NRT nonlinear Schroedinger equation
title Quasi-stationary states of the NRT nonlinear Schroedinger equation
spellingShingle Quasi-stationary states of the NRT nonlinear Schroedinger equation
Toranzo, I. V.
Nonlinear Schrödinger Equation
Quasi Stationary States
Tsallis Thermostatistics
title_short Quasi-stationary states of the NRT nonlinear Schroedinger equation
title_full Quasi-stationary states of the NRT nonlinear Schroedinger equation
title_fullStr Quasi-stationary states of the NRT nonlinear Schroedinger equation
title_full_unstemmed Quasi-stationary states of the NRT nonlinear Schroedinger equation
title_sort Quasi-stationary states of the NRT nonlinear Schroedinger equation
dc.creator.none.fl_str_mv Toranzo, I. V.
Plastino, Ángel Ricardo
Dehesa, J.S.
Plastino, Ángel Luis
author Toranzo, I. V.
author_facet Toranzo, I. V.
Plastino, Ángel Ricardo
Dehesa, J.S.
Plastino, Ángel Luis
author_role author
author2 Plastino, Ángel Ricardo
Dehesa, J.S.
Plastino, Ángel Luis
author2_role author
author
author
dc.subject.none.fl_str_mv Nonlinear Schrödinger Equation
Quasi Stationary States
Tsallis Thermostatistics
topic Nonlinear Schrödinger Equation
Quasi Stationary States
Tsallis Thermostatistics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv With regards to the nonlinear Schrödinger equation recently advanced by Nobre, Rego-Monteiro, and Tsallis (NRT), based on Tsallis q-thermo-statistical formalism, we investigate the existence and properties of its quasi-stationary solutions, which have the time and space dependences separated in a q-deformed fashion. One recovers the normal factorization into purely spatial and purely temporal factors, corresponding to the standard, linear Schrödinger equation, when the deformation vanishes (q = 1). We discuss various specific examples of exact, quasi-stationary solutions of the NRT equation. In particular, we obtain a quasi-stationary solution for the Moshinsky model, providing the first example of an exact solution of the NRT equation for a system of interacting particles.
Fil: Toranzo, I. V.. Universidad de Granada; España
Fil: Plastino, Ángel Ricardo. Universidad de Granada; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina
Fil: Dehesa, J.S.. Universidad de Granada; España
Fil: Plastino, Ángel Luis. Universidad de Granada; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
description With regards to the nonlinear Schrödinger equation recently advanced by Nobre, Rego-Monteiro, and Tsallis (NRT), based on Tsallis q-thermo-statistical formalism, we investigate the existence and properties of its quasi-stationary solutions, which have the time and space dependences separated in a q-deformed fashion. One recovers the normal factorization into purely spatial and purely temporal factors, corresponding to the standard, linear Schrödinger equation, when the deformation vanishes (q = 1). We discuss various specific examples of exact, quasi-stationary solutions of the NRT equation. In particular, we obtain a quasi-stationary solution for the Moshinsky model, providing the first example of an exact solution of the NRT equation for a system of interacting particles.
publishDate 2013
dc.date.none.fl_str_mv 2013-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/24235
Toranzo, I. V.; Plastino, Ángel Ricardo; Dehesa, J.S.; Plastino, Ángel Luis; Quasi-stationary states of the NRT nonlinear Schroedinger equation; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 392; 5-2013; 3945-3951
0378-4371
CONICET Digital
CONICET
url http://hdl.handle.net/11336/24235
identifier_str_mv Toranzo, I. V.; Plastino, Ángel Ricardo; Dehesa, J.S.; Plastino, Ángel Luis; Quasi-stationary states of the NRT nonlinear Schroedinger equation; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 392; 5-2013; 3945-3951
0378-4371
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113003476
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2013.04.034
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269104879173632
score 13.13397