Quasi-stationary states of the NRT nonlinear Schroedinger equation
- Autores
- Toranzo, I. V.; Plastino, Ángel Ricardo; Dehesa, J.S.; Plastino, Ángel Luis
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- With regards to the nonlinear Schrödinger equation recently advanced by Nobre, Rego-Monteiro, and Tsallis (NRT), based on Tsallis q-thermo-statistical formalism, we investigate the existence and properties of its quasi-stationary solutions, which have the time and space dependences separated in a q-deformed fashion. One recovers the normal factorization into purely spatial and purely temporal factors, corresponding to the standard, linear Schrödinger equation, when the deformation vanishes (q = 1). We discuss various specific examples of exact, quasi-stationary solutions of the NRT equation. In particular, we obtain a quasi-stationary solution for the Moshinsky model, providing the first example of an exact solution of the NRT equation for a system of interacting particles.
Fil: Toranzo, I. V.. Universidad de Granada; España
Fil: Plastino, Ángel Ricardo. Universidad de Granada; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina
Fil: Dehesa, J.S.. Universidad de Granada; España
Fil: Plastino, Ángel Luis. Universidad de Granada; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina - Materia
-
Nonlinear Schrödinger Equation
Quasi Stationary States
Tsallis Thermostatistics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/24235
Ver los metadatos del registro completo
id |
CONICETDig_fc09511557a229d274a2be386b80f8d3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/24235 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quasi-stationary states of the NRT nonlinear Schroedinger equationToranzo, I. V.Plastino, Ángel RicardoDehesa, J.S.Plastino, Ángel LuisNonlinear Schrödinger EquationQuasi Stationary StatesTsallis Thermostatisticshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1With regards to the nonlinear Schrödinger equation recently advanced by Nobre, Rego-Monteiro, and Tsallis (NRT), based on Tsallis q-thermo-statistical formalism, we investigate the existence and properties of its quasi-stationary solutions, which have the time and space dependences separated in a q-deformed fashion. One recovers the normal factorization into purely spatial and purely temporal factors, corresponding to the standard, linear Schrödinger equation, when the deformation vanishes (q = 1). We discuss various specific examples of exact, quasi-stationary solutions of the NRT equation. In particular, we obtain a quasi-stationary solution for the Moshinsky model, providing the first example of an exact solution of the NRT equation for a system of interacting particles.Fil: Toranzo, I. V.. Universidad de Granada; EspañaFil: Plastino, Ángel Ricardo. Universidad de Granada; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Dehesa, J.S.. Universidad de Granada; EspañaFil: Plastino, Ángel Luis. Universidad de Granada; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaElsevier Science2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/24235Toranzo, I. V.; Plastino, Ángel Ricardo; Dehesa, J.S.; Plastino, Ángel Luis; Quasi-stationary states of the NRT nonlinear Schroedinger equation; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 392; 5-2013; 3945-39510378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113003476info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2013.04.034info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:36Zoai:ri.conicet.gov.ar:11336/24235instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:36.39CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quasi-stationary states of the NRT nonlinear Schroedinger equation |
title |
Quasi-stationary states of the NRT nonlinear Schroedinger equation |
spellingShingle |
Quasi-stationary states of the NRT nonlinear Schroedinger equation Toranzo, I. V. Nonlinear Schrödinger Equation Quasi Stationary States Tsallis Thermostatistics |
title_short |
Quasi-stationary states of the NRT nonlinear Schroedinger equation |
title_full |
Quasi-stationary states of the NRT nonlinear Schroedinger equation |
title_fullStr |
Quasi-stationary states of the NRT nonlinear Schroedinger equation |
title_full_unstemmed |
Quasi-stationary states of the NRT nonlinear Schroedinger equation |
title_sort |
Quasi-stationary states of the NRT nonlinear Schroedinger equation |
dc.creator.none.fl_str_mv |
Toranzo, I. V. Plastino, Ángel Ricardo Dehesa, J.S. Plastino, Ángel Luis |
author |
Toranzo, I. V. |
author_facet |
Toranzo, I. V. Plastino, Ángel Ricardo Dehesa, J.S. Plastino, Ángel Luis |
author_role |
author |
author2 |
Plastino, Ángel Ricardo Dehesa, J.S. Plastino, Ángel Luis |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Nonlinear Schrödinger Equation Quasi Stationary States Tsallis Thermostatistics |
topic |
Nonlinear Schrödinger Equation Quasi Stationary States Tsallis Thermostatistics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
With regards to the nonlinear Schrödinger equation recently advanced by Nobre, Rego-Monteiro, and Tsallis (NRT), based on Tsallis q-thermo-statistical formalism, we investigate the existence and properties of its quasi-stationary solutions, which have the time and space dependences separated in a q-deformed fashion. One recovers the normal factorization into purely spatial and purely temporal factors, corresponding to the standard, linear Schrödinger equation, when the deformation vanishes (q = 1). We discuss various specific examples of exact, quasi-stationary solutions of the NRT equation. In particular, we obtain a quasi-stationary solution for the Moshinsky model, providing the first example of an exact solution of the NRT equation for a system of interacting particles. Fil: Toranzo, I. V.. Universidad de Granada; España Fil: Plastino, Ángel Ricardo. Universidad de Granada; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina Fil: Dehesa, J.S.. Universidad de Granada; España Fil: Plastino, Ángel Luis. Universidad de Granada; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina |
description |
With regards to the nonlinear Schrödinger equation recently advanced by Nobre, Rego-Monteiro, and Tsallis (NRT), based on Tsallis q-thermo-statistical formalism, we investigate the existence and properties of its quasi-stationary solutions, which have the time and space dependences separated in a q-deformed fashion. One recovers the normal factorization into purely spatial and purely temporal factors, corresponding to the standard, linear Schrödinger equation, when the deformation vanishes (q = 1). We discuss various specific examples of exact, quasi-stationary solutions of the NRT equation. In particular, we obtain a quasi-stationary solution for the Moshinsky model, providing the first example of an exact solution of the NRT equation for a system of interacting particles. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/24235 Toranzo, I. V.; Plastino, Ángel Ricardo; Dehesa, J.S.; Plastino, Ángel Luis; Quasi-stationary states of the NRT nonlinear Schroedinger equation; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 392; 5-2013; 3945-3951 0378-4371 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/24235 |
identifier_str_mv |
Toranzo, I. V.; Plastino, Ángel Ricardo; Dehesa, J.S.; Plastino, Ángel Luis; Quasi-stationary states of the NRT nonlinear Schroedinger equation; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 392; 5-2013; 3945-3951 0378-4371 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113003476 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2013.04.034 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269104879173632 |
score |
13.13397 |