Exact Sequences of Tensor Categories
- Autores
- Bruguieres, A.; Natale, Sonia Lujan
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce the notions of normal tensor functor and exact sequence of tensor categories. We show that exact sequences of tensor categories generalize strictly exact sequences of Hopf algebras as defined by Schneider, and in particular, exact sequences of (finite) groups. We classify exact sequences of tensor categories formula (such that formula is finite) in terms of normal, faithful Hopf monads on formula and also in terms of self-trivializing commutative algebras in the center of formula. More generally, we show that, given any dominant tensor functor formula admitting an exact (right or left) adjoint, there exists a canonical commutative algebra (A,σ) in the center of formula such that F is tensor equivalent to the free module functor formula, where formula denotes the category of A-modules in formula endowed with a monoidal structure defined using σ. We re-interpret equivariantization under a finite group action on a tensor category and, in particular, the modularization construction, in terms of exact sequences, Hopf monads, and commutative central algebras. As an application, we prove that a braided fusion category whose dimension is odd and square-free is equivalent, as a fusion category, to the representation category of a group.
Fil: Bruguieres, A.. Université Montpellier II; Francia
Fil: Natale, Sonia Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
Tensor category
Exact sequence
Hopf monad
Hopf algebra - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/271927
Ver los metadatos del registro completo
id |
CONICETDig_651da068b4d39af13077770784e51f82 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/271927 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Exact Sequences of Tensor CategoriesBruguieres, A.Natale, Sonia LujanTensor categoryExact sequenceHopf monadHopf algebrahttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce the notions of normal tensor functor and exact sequence of tensor categories. We show that exact sequences of tensor categories generalize strictly exact sequences of Hopf algebras as defined by Schneider, and in particular, exact sequences of (finite) groups. We classify exact sequences of tensor categories formula (such that formula is finite) in terms of normal, faithful Hopf monads on formula and also in terms of self-trivializing commutative algebras in the center of formula. More generally, we show that, given any dominant tensor functor formula admitting an exact (right or left) adjoint, there exists a canonical commutative algebra (A,σ) in the center of formula such that F is tensor equivalent to the free module functor formula, where formula denotes the category of A-modules in formula endowed with a monoidal structure defined using σ. We re-interpret equivariantization under a finite group action on a tensor category and, in particular, the modularization construction, in terms of exact sequences, Hopf monads, and commutative central algebras. As an application, we prove that a braided fusion category whose dimension is odd and square-free is equivalent, as a fusion category, to the representation category of a group.Fil: Bruguieres, A.. Université Montpellier II; FranciaFil: Natale, Sonia Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaOxford University Press2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/271927Bruguieres, A.; Natale, Sonia Lujan; Exact Sequences of Tensor Categories; Oxford University Press; International Mathematics Research Notices; 2011; 1-2011; 5644-57051073-7928CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2011/24/5644/683649info:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnq294info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:00:41Zoai:ri.conicet.gov.ar:11336/271927instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:00:41.525CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Exact Sequences of Tensor Categories |
title |
Exact Sequences of Tensor Categories |
spellingShingle |
Exact Sequences of Tensor Categories Bruguieres, A. Tensor category Exact sequence Hopf monad Hopf algebra |
title_short |
Exact Sequences of Tensor Categories |
title_full |
Exact Sequences of Tensor Categories |
title_fullStr |
Exact Sequences of Tensor Categories |
title_full_unstemmed |
Exact Sequences of Tensor Categories |
title_sort |
Exact Sequences of Tensor Categories |
dc.creator.none.fl_str_mv |
Bruguieres, A. Natale, Sonia Lujan |
author |
Bruguieres, A. |
author_facet |
Bruguieres, A. Natale, Sonia Lujan |
author_role |
author |
author2 |
Natale, Sonia Lujan |
author2_role |
author |
dc.subject.none.fl_str_mv |
Tensor category Exact sequence Hopf monad Hopf algebra |
topic |
Tensor category Exact sequence Hopf monad Hopf algebra |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce the notions of normal tensor functor and exact sequence of tensor categories. We show that exact sequences of tensor categories generalize strictly exact sequences of Hopf algebras as defined by Schneider, and in particular, exact sequences of (finite) groups. We classify exact sequences of tensor categories formula (such that formula is finite) in terms of normal, faithful Hopf monads on formula and also in terms of self-trivializing commutative algebras in the center of formula. More generally, we show that, given any dominant tensor functor formula admitting an exact (right or left) adjoint, there exists a canonical commutative algebra (A,σ) in the center of formula such that F is tensor equivalent to the free module functor formula, where formula denotes the category of A-modules in formula endowed with a monoidal structure defined using σ. We re-interpret equivariantization under a finite group action on a tensor category and, in particular, the modularization construction, in terms of exact sequences, Hopf monads, and commutative central algebras. As an application, we prove that a braided fusion category whose dimension is odd and square-free is equivalent, as a fusion category, to the representation category of a group. Fil: Bruguieres, A.. Université Montpellier II; Francia Fil: Natale, Sonia Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We introduce the notions of normal tensor functor and exact sequence of tensor categories. We show that exact sequences of tensor categories generalize strictly exact sequences of Hopf algebras as defined by Schneider, and in particular, exact sequences of (finite) groups. We classify exact sequences of tensor categories formula (such that formula is finite) in terms of normal, faithful Hopf monads on formula and also in terms of self-trivializing commutative algebras in the center of formula. More generally, we show that, given any dominant tensor functor formula admitting an exact (right or left) adjoint, there exists a canonical commutative algebra (A,σ) in the center of formula such that F is tensor equivalent to the free module functor formula, where formula denotes the category of A-modules in formula endowed with a monoidal structure defined using σ. We re-interpret equivariantization under a finite group action on a tensor category and, in particular, the modularization construction, in terms of exact sequences, Hopf monads, and commutative central algebras. As an application, we prove that a braided fusion category whose dimension is odd and square-free is equivalent, as a fusion category, to the representation category of a group. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/271927 Bruguieres, A.; Natale, Sonia Lujan; Exact Sequences of Tensor Categories; Oxford University Press; International Mathematics Research Notices; 2011; 1-2011; 5644-5705 1073-7928 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/271927 |
identifier_str_mv |
Bruguieres, A.; Natale, Sonia Lujan; Exact Sequences of Tensor Categories; Oxford University Press; International Mathematics Research Notices; 2011; 1-2011; 5644-5705 1073-7928 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2011/24/5644/683649 info:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnq294 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613791793283072 |
score |
13.070432 |