Exact Sequences of Tensor Categories

Autores
Bruguieres, A.; Natale, Sonia Lujan
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We introduce the notions of normal tensor functor and exact sequence of tensor categories. We show that exact sequences of tensor categories generalize strictly exact sequences of Hopf algebras as defined by Schneider, and in particular, exact sequences of (finite) groups. We classify exact sequences of tensor categories formula (such that formula is finite) in terms of normal, faithful Hopf monads on formula and also in terms of self-trivializing commutative algebras in the center of formula⁠. More generally, we show that, given any dominant tensor functor formula admitting an exact (right or left) adjoint, there exists a canonical commutative algebra (A,σ) in the center of formula such that F is tensor equivalent to the free module functor formula⁠, where formula denotes the category of A-modules in formula endowed with a monoidal structure defined using σ. We re-interpret equivariantization under a finite group action on a tensor category and, in particular, the modularization construction, in terms of exact sequences, Hopf monads, and commutative central algebras. As an application, we prove that a braided fusion category whose dimension is odd and square-free is equivalent, as a fusion category, to the representation category of a group.
Fil: Bruguieres, A.. Université Montpellier II; Francia
Fil: Natale, Sonia Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
Tensor category
Exact sequence
Hopf monad
Hopf algebra
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/271927

id CONICETDig_651da068b4d39af13077770784e51f82
oai_identifier_str oai:ri.conicet.gov.ar:11336/271927
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Exact Sequences of Tensor CategoriesBruguieres, A.Natale, Sonia LujanTensor categoryExact sequenceHopf monadHopf algebrahttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce the notions of normal tensor functor and exact sequence of tensor categories. We show that exact sequences of tensor categories generalize strictly exact sequences of Hopf algebras as defined by Schneider, and in particular, exact sequences of (finite) groups. We classify exact sequences of tensor categories formula (such that formula is finite) in terms of normal, faithful Hopf monads on formula and also in terms of self-trivializing commutative algebras in the center of formula⁠. More generally, we show that, given any dominant tensor functor formula admitting an exact (right or left) adjoint, there exists a canonical commutative algebra (A,σ) in the center of formula such that F is tensor equivalent to the free module functor formula⁠, where formula denotes the category of A-modules in formula endowed with a monoidal structure defined using σ. We re-interpret equivariantization under a finite group action on a tensor category and, in particular, the modularization construction, in terms of exact sequences, Hopf monads, and commutative central algebras. As an application, we prove that a braided fusion category whose dimension is odd and square-free is equivalent, as a fusion category, to the representation category of a group.Fil: Bruguieres, A.. Université Montpellier II; FranciaFil: Natale, Sonia Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaOxford University Press2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/271927Bruguieres, A.; Natale, Sonia Lujan; Exact Sequences of Tensor Categories; Oxford University Press; International Mathematics Research Notices; 2011; 1-2011; 5644-57051073-7928CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2011/24/5644/683649info:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnq294info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:00:41Zoai:ri.conicet.gov.ar:11336/271927instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:00:41.525CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Exact Sequences of Tensor Categories
title Exact Sequences of Tensor Categories
spellingShingle Exact Sequences of Tensor Categories
Bruguieres, A.
Tensor category
Exact sequence
Hopf monad
Hopf algebra
title_short Exact Sequences of Tensor Categories
title_full Exact Sequences of Tensor Categories
title_fullStr Exact Sequences of Tensor Categories
title_full_unstemmed Exact Sequences of Tensor Categories
title_sort Exact Sequences of Tensor Categories
dc.creator.none.fl_str_mv Bruguieres, A.
Natale, Sonia Lujan
author Bruguieres, A.
author_facet Bruguieres, A.
Natale, Sonia Lujan
author_role author
author2 Natale, Sonia Lujan
author2_role author
dc.subject.none.fl_str_mv Tensor category
Exact sequence
Hopf monad
Hopf algebra
topic Tensor category
Exact sequence
Hopf monad
Hopf algebra
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We introduce the notions of normal tensor functor and exact sequence of tensor categories. We show that exact sequences of tensor categories generalize strictly exact sequences of Hopf algebras as defined by Schneider, and in particular, exact sequences of (finite) groups. We classify exact sequences of tensor categories formula (such that formula is finite) in terms of normal, faithful Hopf monads on formula and also in terms of self-trivializing commutative algebras in the center of formula⁠. More generally, we show that, given any dominant tensor functor formula admitting an exact (right or left) adjoint, there exists a canonical commutative algebra (A,σ) in the center of formula such that F is tensor equivalent to the free module functor formula⁠, where formula denotes the category of A-modules in formula endowed with a monoidal structure defined using σ. We re-interpret equivariantization under a finite group action on a tensor category and, in particular, the modularization construction, in terms of exact sequences, Hopf monads, and commutative central algebras. As an application, we prove that a braided fusion category whose dimension is odd and square-free is equivalent, as a fusion category, to the representation category of a group.
Fil: Bruguieres, A.. Université Montpellier II; Francia
Fil: Natale, Sonia Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description We introduce the notions of normal tensor functor and exact sequence of tensor categories. We show that exact sequences of tensor categories generalize strictly exact sequences of Hopf algebras as defined by Schneider, and in particular, exact sequences of (finite) groups. We classify exact sequences of tensor categories formula (such that formula is finite) in terms of normal, faithful Hopf monads on formula and also in terms of self-trivializing commutative algebras in the center of formula⁠. More generally, we show that, given any dominant tensor functor formula admitting an exact (right or left) adjoint, there exists a canonical commutative algebra (A,σ) in the center of formula such that F is tensor equivalent to the free module functor formula⁠, where formula denotes the category of A-modules in formula endowed with a monoidal structure defined using σ. We re-interpret equivariantization under a finite group action on a tensor category and, in particular, the modularization construction, in terms of exact sequences, Hopf monads, and commutative central algebras. As an application, we prove that a braided fusion category whose dimension is odd and square-free is equivalent, as a fusion category, to the representation category of a group.
publishDate 2011
dc.date.none.fl_str_mv 2011-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/271927
Bruguieres, A.; Natale, Sonia Lujan; Exact Sequences of Tensor Categories; Oxford University Press; International Mathematics Research Notices; 2011; 1-2011; 5644-5705
1073-7928
CONICET Digital
CONICET
url http://hdl.handle.net/11336/271927
identifier_str_mv Bruguieres, A.; Natale, Sonia Lujan; Exact Sequences of Tensor Categories; Oxford University Press; International Mathematics Research Notices; 2011; 1-2011; 5644-5705
1073-7928
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2011/24/5644/683649
info:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnq294
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613791793283072
score 13.070432