Nonlinear Optical Microscopy Signal Processing Strategies in Cancer

Autores
Adur, Javier Fernando; Carvalho, Hernandes F.; Cesar, Carlos L.; Casco, Victor Hugo
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This work reviews the most relevant present-day processing methods used to improve the accuracy of multimodal nonlinear images in the detection of epithelial cancer and the supporting stroma. Special emphasis has been placed on methods of non linear optical (NLO) microscopy image processing such as: second harmonic to autofluorescence ageing index of dermis (SAAID), tumor-associated collagen signatures (TACS), fast Fourier transform (FFT) analysis, and gray level co-occurrence matrix (GLCM)-based methods. These strategies are presented as a set of potential valuable diagnostic tools for early cancer detection. It may be proposed that the combination of NLO microscopy and informatics based image analysis approaches described in this review (all carried out on free software) may represent a powerful tool to investigate collagen organization and remodeling of extracellular matrix in carcinogenesis processes.
Fil: Adur, Javier Fernando. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Carvalho, Hernandes F.. Instituto Nacional de Ciéncia y Tecnologia de Fotónica Aplicada á Biología Celular; Brasil
Fil: Cesar, Carlos L.. Instituto Nacional de Ciéncia y Tecnologia de Fotónica Aplicada á Biología Celular; Brasil
Fil: Casco, Victor Hugo. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina
Materia
Nonlinear Signal
Nonlinear Microscopy
Anisotropy, Gray Level Co-Occurrence Matrix
Tumor-Associated Collagen Signatures
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/35434

id CONICETDig_649b14da75c735ac5060a46e2cea1df5
oai_identifier_str oai:ri.conicet.gov.ar:11336/35434
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nonlinear Optical Microscopy Signal Processing Strategies in CancerAdur, Javier FernandoCarvalho, Hernandes F.Cesar, Carlos L.Casco, Victor HugoNonlinear SignalNonlinear MicroscopyAnisotropy, Gray Level Co-Occurrence MatrixTumor-Associated Collagen Signatureshttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3This work reviews the most relevant present-day processing methods used to improve the accuracy of multimodal nonlinear images in the detection of epithelial cancer and the supporting stroma. Special emphasis has been placed on methods of non linear optical (NLO) microscopy image processing such as: second harmonic to autofluorescence ageing index of dermis (SAAID), tumor-associated collagen signatures (TACS), fast Fourier transform (FFT) analysis, and gray level co-occurrence matrix (GLCM)-based methods. These strategies are presented as a set of potential valuable diagnostic tools for early cancer detection. It may be proposed that the combination of NLO microscopy and informatics based image analysis approaches described in this review (all carried out on free software) may represent a powerful tool to investigate collagen organization and remodeling of extracellular matrix in carcinogenesis processes.Fil: Adur, Javier Fernando. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Carvalho, Hernandes F.. Instituto Nacional de Ciéncia y Tecnologia de Fotónica Aplicada á Biología Celular; BrasilFil: Cesar, Carlos L.. Instituto Nacional de Ciéncia y Tecnologia de Fotónica Aplicada á Biología Celular; BrasilFil: Casco, Victor Hugo. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; ArgentinaSage Publications2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/35434Adur, Javier Fernando; Carvalho, Hernandes F.; Cesar, Carlos L.; Casco, Victor Hugo; Nonlinear Optical Microscopy Signal Processing Strategies in Cancer; Sage Publications; Cancer Informatics; 13; 1-2014; 67-761176-9351CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.la-press.com/article.php?article_id=4148info:eu-repo/semantics/altIdentifier/doi/10.4137/CIN.S12419info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:36:19Zoai:ri.conicet.gov.ar:11336/35434instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:36:19.729CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nonlinear Optical Microscopy Signal Processing Strategies in Cancer
title Nonlinear Optical Microscopy Signal Processing Strategies in Cancer
spellingShingle Nonlinear Optical Microscopy Signal Processing Strategies in Cancer
Adur, Javier Fernando
Nonlinear Signal
Nonlinear Microscopy
Anisotropy, Gray Level Co-Occurrence Matrix
Tumor-Associated Collagen Signatures
title_short Nonlinear Optical Microscopy Signal Processing Strategies in Cancer
title_full Nonlinear Optical Microscopy Signal Processing Strategies in Cancer
title_fullStr Nonlinear Optical Microscopy Signal Processing Strategies in Cancer
title_full_unstemmed Nonlinear Optical Microscopy Signal Processing Strategies in Cancer
title_sort Nonlinear Optical Microscopy Signal Processing Strategies in Cancer
dc.creator.none.fl_str_mv Adur, Javier Fernando
Carvalho, Hernandes F.
Cesar, Carlos L.
Casco, Victor Hugo
author Adur, Javier Fernando
author_facet Adur, Javier Fernando
Carvalho, Hernandes F.
Cesar, Carlos L.
Casco, Victor Hugo
author_role author
author2 Carvalho, Hernandes F.
Cesar, Carlos L.
Casco, Victor Hugo
author2_role author
author
author
dc.subject.none.fl_str_mv Nonlinear Signal
Nonlinear Microscopy
Anisotropy, Gray Level Co-Occurrence Matrix
Tumor-Associated Collagen Signatures
topic Nonlinear Signal
Nonlinear Microscopy
Anisotropy, Gray Level Co-Occurrence Matrix
Tumor-Associated Collagen Signatures
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv This work reviews the most relevant present-day processing methods used to improve the accuracy of multimodal nonlinear images in the detection of epithelial cancer and the supporting stroma. Special emphasis has been placed on methods of non linear optical (NLO) microscopy image processing such as: second harmonic to autofluorescence ageing index of dermis (SAAID), tumor-associated collagen signatures (TACS), fast Fourier transform (FFT) analysis, and gray level co-occurrence matrix (GLCM)-based methods. These strategies are presented as a set of potential valuable diagnostic tools for early cancer detection. It may be proposed that the combination of NLO microscopy and informatics based image analysis approaches described in this review (all carried out on free software) may represent a powerful tool to investigate collagen organization and remodeling of extracellular matrix in carcinogenesis processes.
Fil: Adur, Javier Fernando. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Carvalho, Hernandes F.. Instituto Nacional de Ciéncia y Tecnologia de Fotónica Aplicada á Biología Celular; Brasil
Fil: Cesar, Carlos L.. Instituto Nacional de Ciéncia y Tecnologia de Fotónica Aplicada á Biología Celular; Brasil
Fil: Casco, Victor Hugo. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina
description This work reviews the most relevant present-day processing methods used to improve the accuracy of multimodal nonlinear images in the detection of epithelial cancer and the supporting stroma. Special emphasis has been placed on methods of non linear optical (NLO) microscopy image processing such as: second harmonic to autofluorescence ageing index of dermis (SAAID), tumor-associated collagen signatures (TACS), fast Fourier transform (FFT) analysis, and gray level co-occurrence matrix (GLCM)-based methods. These strategies are presented as a set of potential valuable diagnostic tools for early cancer detection. It may be proposed that the combination of NLO microscopy and informatics based image analysis approaches described in this review (all carried out on free software) may represent a powerful tool to investigate collagen organization and remodeling of extracellular matrix in carcinogenesis processes.
publishDate 2014
dc.date.none.fl_str_mv 2014-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/35434
Adur, Javier Fernando; Carvalho, Hernandes F.; Cesar, Carlos L.; Casco, Victor Hugo; Nonlinear Optical Microscopy Signal Processing Strategies in Cancer; Sage Publications; Cancer Informatics; 13; 1-2014; 67-76
1176-9351
CONICET Digital
CONICET
url http://hdl.handle.net/11336/35434
identifier_str_mv Adur, Javier Fernando; Carvalho, Hernandes F.; Cesar, Carlos L.; Casco, Victor Hugo; Nonlinear Optical Microscopy Signal Processing Strategies in Cancer; Sage Publications; Cancer Informatics; 13; 1-2014; 67-76
1176-9351
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.la-press.com/article.php?article_id=4148
info:eu-repo/semantics/altIdentifier/doi/10.4137/CIN.S12419
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Sage Publications
publisher.none.fl_str_mv Sage Publications
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614383409299456
score 13.070432