A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity
- Autores
- Shevchenko, Victoria; Benn, R. Austin; Scholz, Robert; Wei, Wei; Pallavicini, Carla; Klatzmann, Ulysse; Alberti, Francesco; Satterthwaite, Theodore D.; Wassermann, Demian; Bazin, Pierre-Louis; Margulies, Daniel S.
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Functional connectivity holds promise as a biomarker of schizophrenia. Yet, the high dimensionality of predictive models trained on functional connectomes, combined with small sample sizes in clinical research, increases the risk of overfitting. Recently, low-dimensional representations of the connectome such as macroscale cortical gradients and gradient dispersion have been proposed, with studies noting consistent gradient and dispersion differences in psychiatric conditions. However, it is unknown which of these derived measures has the highest predictive capacity and how they compare to raw functional connectivity specifically in the case of schizophrenia. Our study evaluates which connectome features derived from resting state functional MRI — functional connectivity, gradients, or gradient dispersion — best identify schizophrenia. To this end, we leveraged data of 936 individuals from three large open-access datasets: COBRE, LA5c, and SRPBS-1600. We developed a pipeline which allows us to aggregate over a million different features and assess their predictive potential in a single, computationally efficient experiment. We selected top 1% of features with the largest permutation feature importance and trained 13 classifiers on them using 10-fold cross-validation. Our findings indicate that functional connectivity outperforms its low-dimensional derivatives such as cortical gradients and gradient dispersion in identifying schizophrenia (Mann–Whitney test conducted on test accuracy: connectivity vs. 1st gradient: U = 142, p < 0.003; connectivity vs. neighborhood dispersion: U = 141, p = 0.004). Additionally, we demonstrated that the edges which contribute the most to classification performance are the ones connecting primary sensory regions. Functional connectivity within the primary sensory regions showed the highest discrimination capabilities between subjects with schizophrenia and neurotypical controls. These findings along with the feature selection pipeline proposed here will facilitate future inquiries into the prediction of schizophrenia subtypes and transdiagnostic phenomena.
Fil: Shevchenko, Victoria. University of Oxford; Reino Unido
Fil: Benn, R. Austin. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;
Fil: Scholz, Robert. University of Oxford; Reino Unido
Fil: Wei, Wei. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;
Fil: Pallavicini, Carla. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Klatzmann, Ulysse. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;
Fil: Alberti, Francesco. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;
Fil: Satterthwaite, Theodore D.. University of Pennsylvania; Estados Unidos
Fil: Wassermann, Demian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bazin, Pierre-Louis. No especifíca;
Fil: Margulies, Daniel S.. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge; - Materia
-
fmri
schizophrenia
machine learning
Functional connectivity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/274434
Ver los metadatos del registro completo
| id |
CONICETDig_62e6a1458be960dc2148e331659e0a68 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/274434 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A comparative machine learning study of schizophrenia biomarkers derived from functional connectivityShevchenko, VictoriaBenn, R. AustinScholz, RobertWei, WeiPallavicini, CarlaKlatzmann, UlysseAlberti, FrancescoSatterthwaite, Theodore D.Wassermann, DemianBazin, Pierre-LouisMargulies, Daniel S.fmrischizophreniamachine learningFunctional connectivityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Functional connectivity holds promise as a biomarker of schizophrenia. Yet, the high dimensionality of predictive models trained on functional connectomes, combined with small sample sizes in clinical research, increases the risk of overfitting. Recently, low-dimensional representations of the connectome such as macroscale cortical gradients and gradient dispersion have been proposed, with studies noting consistent gradient and dispersion differences in psychiatric conditions. However, it is unknown which of these derived measures has the highest predictive capacity and how they compare to raw functional connectivity specifically in the case of schizophrenia. Our study evaluates which connectome features derived from resting state functional MRI — functional connectivity, gradients, or gradient dispersion — best identify schizophrenia. To this end, we leveraged data of 936 individuals from three large open-access datasets: COBRE, LA5c, and SRPBS-1600. We developed a pipeline which allows us to aggregate over a million different features and assess their predictive potential in a single, computationally efficient experiment. We selected top 1% of features with the largest permutation feature importance and trained 13 classifiers on them using 10-fold cross-validation. Our findings indicate that functional connectivity outperforms its low-dimensional derivatives such as cortical gradients and gradient dispersion in identifying schizophrenia (Mann–Whitney test conducted on test accuracy: connectivity vs. 1st gradient: U = 142, p < 0.003; connectivity vs. neighborhood dispersion: U = 141, p = 0.004). Additionally, we demonstrated that the edges which contribute the most to classification performance are the ones connecting primary sensory regions. Functional connectivity within the primary sensory regions showed the highest discrimination capabilities between subjects with schizophrenia and neurotypical controls. These findings along with the feature selection pipeline proposed here will facilitate future inquiries into the prediction of schizophrenia subtypes and transdiagnostic phenomena.Fil: Shevchenko, Victoria. University of Oxford; Reino UnidoFil: Benn, R. Austin. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;Fil: Scholz, Robert. University of Oxford; Reino UnidoFil: Wei, Wei. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;Fil: Pallavicini, Carla. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Klatzmann, Ulysse. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;Fil: Alberti, Francesco. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;Fil: Satterthwaite, Theodore D.. University of Pennsylvania; Estados UnidosFil: Wassermann, Demian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bazin, Pierre-Louis. No especifíca;Fil: Margulies, Daniel S.. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;Nature2025-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/274434Shevchenko, Victoria; Benn, R. Austin; Scholz, Robert; Wei, Wei; Pallavicini, Carla; et al.; A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity; Nature; Scientific Reports; 15; 1; 1-2025; 1-142045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-024-84152-2info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-024-84152-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:22:44Zoai:ri.conicet.gov.ar:11336/274434instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:22:44.698CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity |
| title |
A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity |
| spellingShingle |
A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity Shevchenko, Victoria fmri schizophrenia machine learning Functional connectivity |
| title_short |
A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity |
| title_full |
A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity |
| title_fullStr |
A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity |
| title_full_unstemmed |
A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity |
| title_sort |
A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity |
| dc.creator.none.fl_str_mv |
Shevchenko, Victoria Benn, R. Austin Scholz, Robert Wei, Wei Pallavicini, Carla Klatzmann, Ulysse Alberti, Francesco Satterthwaite, Theodore D. Wassermann, Demian Bazin, Pierre-Louis Margulies, Daniel S. |
| author |
Shevchenko, Victoria |
| author_facet |
Shevchenko, Victoria Benn, R. Austin Scholz, Robert Wei, Wei Pallavicini, Carla Klatzmann, Ulysse Alberti, Francesco Satterthwaite, Theodore D. Wassermann, Demian Bazin, Pierre-Louis Margulies, Daniel S. |
| author_role |
author |
| author2 |
Benn, R. Austin Scholz, Robert Wei, Wei Pallavicini, Carla Klatzmann, Ulysse Alberti, Francesco Satterthwaite, Theodore D. Wassermann, Demian Bazin, Pierre-Louis Margulies, Daniel S. |
| author2_role |
author author author author author author author author author author |
| dc.subject.none.fl_str_mv |
fmri schizophrenia machine learning Functional connectivity |
| topic |
fmri schizophrenia machine learning Functional connectivity |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Functional connectivity holds promise as a biomarker of schizophrenia. Yet, the high dimensionality of predictive models trained on functional connectomes, combined with small sample sizes in clinical research, increases the risk of overfitting. Recently, low-dimensional representations of the connectome such as macroscale cortical gradients and gradient dispersion have been proposed, with studies noting consistent gradient and dispersion differences in psychiatric conditions. However, it is unknown which of these derived measures has the highest predictive capacity and how they compare to raw functional connectivity specifically in the case of schizophrenia. Our study evaluates which connectome features derived from resting state functional MRI — functional connectivity, gradients, or gradient dispersion — best identify schizophrenia. To this end, we leveraged data of 936 individuals from three large open-access datasets: COBRE, LA5c, and SRPBS-1600. We developed a pipeline which allows us to aggregate over a million different features and assess their predictive potential in a single, computationally efficient experiment. We selected top 1% of features with the largest permutation feature importance and trained 13 classifiers on them using 10-fold cross-validation. Our findings indicate that functional connectivity outperforms its low-dimensional derivatives such as cortical gradients and gradient dispersion in identifying schizophrenia (Mann–Whitney test conducted on test accuracy: connectivity vs. 1st gradient: U = 142, p < 0.003; connectivity vs. neighborhood dispersion: U = 141, p = 0.004). Additionally, we demonstrated that the edges which contribute the most to classification performance are the ones connecting primary sensory regions. Functional connectivity within the primary sensory regions showed the highest discrimination capabilities between subjects with schizophrenia and neurotypical controls. These findings along with the feature selection pipeline proposed here will facilitate future inquiries into the prediction of schizophrenia subtypes and transdiagnostic phenomena. Fil: Shevchenko, Victoria. University of Oxford; Reino Unido Fil: Benn, R. Austin. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge; Fil: Scholz, Robert. University of Oxford; Reino Unido Fil: Wei, Wei. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge; Fil: Pallavicini, Carla. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Klatzmann, Ulysse. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge; Fil: Alberti, Francesco. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge; Fil: Satterthwaite, Theodore D.. University of Pennsylvania; Estados Unidos Fil: Wassermann, Demian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Bazin, Pierre-Louis. No especifíca; Fil: Margulies, Daniel S.. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge; |
| description |
Functional connectivity holds promise as a biomarker of schizophrenia. Yet, the high dimensionality of predictive models trained on functional connectomes, combined with small sample sizes in clinical research, increases the risk of overfitting. Recently, low-dimensional representations of the connectome such as macroscale cortical gradients and gradient dispersion have been proposed, with studies noting consistent gradient and dispersion differences in psychiatric conditions. However, it is unknown which of these derived measures has the highest predictive capacity and how they compare to raw functional connectivity specifically in the case of schizophrenia. Our study evaluates which connectome features derived from resting state functional MRI — functional connectivity, gradients, or gradient dispersion — best identify schizophrenia. To this end, we leveraged data of 936 individuals from three large open-access datasets: COBRE, LA5c, and SRPBS-1600. We developed a pipeline which allows us to aggregate over a million different features and assess their predictive potential in a single, computationally efficient experiment. We selected top 1% of features with the largest permutation feature importance and trained 13 classifiers on them using 10-fold cross-validation. Our findings indicate that functional connectivity outperforms its low-dimensional derivatives such as cortical gradients and gradient dispersion in identifying schizophrenia (Mann–Whitney test conducted on test accuracy: connectivity vs. 1st gradient: U = 142, p < 0.003; connectivity vs. neighborhood dispersion: U = 141, p = 0.004). Additionally, we demonstrated that the edges which contribute the most to classification performance are the ones connecting primary sensory regions. Functional connectivity within the primary sensory regions showed the highest discrimination capabilities between subjects with schizophrenia and neurotypical controls. These findings along with the feature selection pipeline proposed here will facilitate future inquiries into the prediction of schizophrenia subtypes and transdiagnostic phenomena. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/274434 Shevchenko, Victoria; Benn, R. Austin; Scholz, Robert; Wei, Wei; Pallavicini, Carla; et al.; A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity; Nature; Scientific Reports; 15; 1; 1-2025; 1-14 2045-2322 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/274434 |
| identifier_str_mv |
Shevchenko, Victoria; Benn, R. Austin; Scholz, Robert; Wei, Wei; Pallavicini, Carla; et al.; A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity; Nature; Scientific Reports; 15; 1; 1-2025; 1-14 2045-2322 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-024-84152-2 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-024-84152-2 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Nature |
| publisher.none.fl_str_mv |
Nature |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335649663746048 |
| score |
12.952241 |