A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity

Autores
Shevchenko, Victoria; Benn, R. Austin; Scholz, Robert; Wei, Wei; Pallavicini, Carla; Klatzmann, Ulysse; Alberti, Francesco; Satterthwaite, Theodore D.; Wassermann, Demian; Bazin, Pierre-Louis; Margulies, Daniel S.
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Functional connectivity holds promise as a biomarker of schizophrenia. Yet, the high dimensionality of predictive models trained on functional connectomes, combined with small sample sizes in clinical research, increases the risk of overfitting. Recently, low-dimensional representations of the connectome such as macroscale cortical gradients and gradient dispersion have been proposed, with studies noting consistent gradient and dispersion differences in psychiatric conditions. However, it is unknown which of these derived measures has the highest predictive capacity and how they compare to raw functional connectivity specifically in the case of schizophrenia. Our study evaluates which connectome features derived from resting state functional MRI — functional connectivity, gradients, or gradient dispersion — best identify schizophrenia. To this end, we leveraged data of 936 individuals from three large open-access datasets: COBRE, LA5c, and SRPBS-1600. We developed a pipeline which allows us to aggregate over a million different features and assess their predictive potential in a single, computationally efficient experiment. We selected top 1% of features with the largest permutation feature importance and trained 13 classifiers on them using 10-fold cross-validation. Our findings indicate that functional connectivity outperforms its low-dimensional derivatives such as cortical gradients and gradient dispersion in identifying schizophrenia (Mann–Whitney test conducted on test accuracy: connectivity vs. 1st gradient: U = 142, p < 0.003; connectivity vs. neighborhood dispersion: U = 141, p = 0.004). Additionally, we demonstrated that the edges which contribute the most to classification performance are the ones connecting primary sensory regions. Functional connectivity within the primary sensory regions showed the highest discrimination capabilities between subjects with schizophrenia and neurotypical controls. These findings along with the feature selection pipeline proposed here will facilitate future inquiries into the prediction of schizophrenia subtypes and transdiagnostic phenomena.
Fil: Shevchenko, Victoria. University of Oxford; Reino Unido
Fil: Benn, R. Austin. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;
Fil: Scholz, Robert. University of Oxford; Reino Unido
Fil: Wei, Wei. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;
Fil: Pallavicini, Carla. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Klatzmann, Ulysse. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;
Fil: Alberti, Francesco. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;
Fil: Satterthwaite, Theodore D.. University of Pennsylvania; Estados Unidos
Fil: Wassermann, Demian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bazin, Pierre-Louis. No especifíca;
Fil: Margulies, Daniel S.. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;
Materia
fmri
schizophrenia
machine learning
Functional connectivity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/274434

id CONICETDig_62e6a1458be960dc2148e331659e0a68
oai_identifier_str oai:ri.conicet.gov.ar:11336/274434
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A comparative machine learning study of schizophrenia biomarkers derived from functional connectivityShevchenko, VictoriaBenn, R. AustinScholz, RobertWei, WeiPallavicini, CarlaKlatzmann, UlysseAlberti, FrancescoSatterthwaite, Theodore D.Wassermann, DemianBazin, Pierre-LouisMargulies, Daniel S.fmrischizophreniamachine learningFunctional connectivityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Functional connectivity holds promise as a biomarker of schizophrenia. Yet, the high dimensionality of predictive models trained on functional connectomes, combined with small sample sizes in clinical research, increases the risk of overfitting. Recently, low-dimensional representations of the connectome such as macroscale cortical gradients and gradient dispersion have been proposed, with studies noting consistent gradient and dispersion differences in psychiatric conditions. However, it is unknown which of these derived measures has the highest predictive capacity and how they compare to raw functional connectivity specifically in the case of schizophrenia. Our study evaluates which connectome features derived from resting state functional MRI — functional connectivity, gradients, or gradient dispersion — best identify schizophrenia. To this end, we leveraged data of 936 individuals from three large open-access datasets: COBRE, LA5c, and SRPBS-1600. We developed a pipeline which allows us to aggregate over a million different features and assess their predictive potential in a single, computationally efficient experiment. We selected top 1% of features with the largest permutation feature importance and trained 13 classifiers on them using 10-fold cross-validation. Our findings indicate that functional connectivity outperforms its low-dimensional derivatives such as cortical gradients and gradient dispersion in identifying schizophrenia (Mann–Whitney test conducted on test accuracy: connectivity vs. 1st gradient: U = 142, p < 0.003; connectivity vs. neighborhood dispersion: U = 141, p = 0.004). Additionally, we demonstrated that the edges which contribute the most to classification performance are the ones connecting primary sensory regions. Functional connectivity within the primary sensory regions showed the highest discrimination capabilities between subjects with schizophrenia and neurotypical controls. These findings along with the feature selection pipeline proposed here will facilitate future inquiries into the prediction of schizophrenia subtypes and transdiagnostic phenomena.Fil: Shevchenko, Victoria. University of Oxford; Reino UnidoFil: Benn, R. Austin. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;Fil: Scholz, Robert. University of Oxford; Reino UnidoFil: Wei, Wei. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;Fil: Pallavicini, Carla. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Klatzmann, Ulysse. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;Fil: Alberti, Francesco. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;Fil: Satterthwaite, Theodore D.. University of Pennsylvania; Estados UnidosFil: Wassermann, Demian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bazin, Pierre-Louis. No especifíca;Fil: Margulies, Daniel S.. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;Nature2025-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/274434Shevchenko, Victoria; Benn, R. Austin; Scholz, Robert; Wei, Wei; Pallavicini, Carla; et al.; A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity; Nature; Scientific Reports; 15; 1; 1-2025; 1-142045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-024-84152-2info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-024-84152-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:22:44Zoai:ri.conicet.gov.ar:11336/274434instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:22:44.698CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity
title A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity
spellingShingle A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity
Shevchenko, Victoria
fmri
schizophrenia
machine learning
Functional connectivity
title_short A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity
title_full A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity
title_fullStr A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity
title_full_unstemmed A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity
title_sort A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity
dc.creator.none.fl_str_mv Shevchenko, Victoria
Benn, R. Austin
Scholz, Robert
Wei, Wei
Pallavicini, Carla
Klatzmann, Ulysse
Alberti, Francesco
Satterthwaite, Theodore D.
Wassermann, Demian
Bazin, Pierre-Louis
Margulies, Daniel S.
author Shevchenko, Victoria
author_facet Shevchenko, Victoria
Benn, R. Austin
Scholz, Robert
Wei, Wei
Pallavicini, Carla
Klatzmann, Ulysse
Alberti, Francesco
Satterthwaite, Theodore D.
Wassermann, Demian
Bazin, Pierre-Louis
Margulies, Daniel S.
author_role author
author2 Benn, R. Austin
Scholz, Robert
Wei, Wei
Pallavicini, Carla
Klatzmann, Ulysse
Alberti, Francesco
Satterthwaite, Theodore D.
Wassermann, Demian
Bazin, Pierre-Louis
Margulies, Daniel S.
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv fmri
schizophrenia
machine learning
Functional connectivity
topic fmri
schizophrenia
machine learning
Functional connectivity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Functional connectivity holds promise as a biomarker of schizophrenia. Yet, the high dimensionality of predictive models trained on functional connectomes, combined with small sample sizes in clinical research, increases the risk of overfitting. Recently, low-dimensional representations of the connectome such as macroscale cortical gradients and gradient dispersion have been proposed, with studies noting consistent gradient and dispersion differences in psychiatric conditions. However, it is unknown which of these derived measures has the highest predictive capacity and how they compare to raw functional connectivity specifically in the case of schizophrenia. Our study evaluates which connectome features derived from resting state functional MRI — functional connectivity, gradients, or gradient dispersion — best identify schizophrenia. To this end, we leveraged data of 936 individuals from three large open-access datasets: COBRE, LA5c, and SRPBS-1600. We developed a pipeline which allows us to aggregate over a million different features and assess their predictive potential in a single, computationally efficient experiment. We selected top 1% of features with the largest permutation feature importance and trained 13 classifiers on them using 10-fold cross-validation. Our findings indicate that functional connectivity outperforms its low-dimensional derivatives such as cortical gradients and gradient dispersion in identifying schizophrenia (Mann–Whitney test conducted on test accuracy: connectivity vs. 1st gradient: U = 142, p < 0.003; connectivity vs. neighborhood dispersion: U = 141, p = 0.004). Additionally, we demonstrated that the edges which contribute the most to classification performance are the ones connecting primary sensory regions. Functional connectivity within the primary sensory regions showed the highest discrimination capabilities between subjects with schizophrenia and neurotypical controls. These findings along with the feature selection pipeline proposed here will facilitate future inquiries into the prediction of schizophrenia subtypes and transdiagnostic phenomena.
Fil: Shevchenko, Victoria. University of Oxford; Reino Unido
Fil: Benn, R. Austin. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;
Fil: Scholz, Robert. University of Oxford; Reino Unido
Fil: Wei, Wei. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;
Fil: Pallavicini, Carla. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Klatzmann, Ulysse. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;
Fil: Alberti, Francesco. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;
Fil: Satterthwaite, Theodore D.. University of Pennsylvania; Estados Unidos
Fil: Wassermann, Demian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bazin, Pierre-Louis. No especifíca;
Fil: Margulies, Daniel S.. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;
description Functional connectivity holds promise as a biomarker of schizophrenia. Yet, the high dimensionality of predictive models trained on functional connectomes, combined with small sample sizes in clinical research, increases the risk of overfitting. Recently, low-dimensional representations of the connectome such as macroscale cortical gradients and gradient dispersion have been proposed, with studies noting consistent gradient and dispersion differences in psychiatric conditions. However, it is unknown which of these derived measures has the highest predictive capacity and how they compare to raw functional connectivity specifically in the case of schizophrenia. Our study evaluates which connectome features derived from resting state functional MRI — functional connectivity, gradients, or gradient dispersion — best identify schizophrenia. To this end, we leveraged data of 936 individuals from three large open-access datasets: COBRE, LA5c, and SRPBS-1600. We developed a pipeline which allows us to aggregate over a million different features and assess their predictive potential in a single, computationally efficient experiment. We selected top 1% of features with the largest permutation feature importance and trained 13 classifiers on them using 10-fold cross-validation. Our findings indicate that functional connectivity outperforms its low-dimensional derivatives such as cortical gradients and gradient dispersion in identifying schizophrenia (Mann–Whitney test conducted on test accuracy: connectivity vs. 1st gradient: U = 142, p < 0.003; connectivity vs. neighborhood dispersion: U = 141, p = 0.004). Additionally, we demonstrated that the edges which contribute the most to classification performance are the ones connecting primary sensory regions. Functional connectivity within the primary sensory regions showed the highest discrimination capabilities between subjects with schizophrenia and neurotypical controls. These findings along with the feature selection pipeline proposed here will facilitate future inquiries into the prediction of schizophrenia subtypes and transdiagnostic phenomena.
publishDate 2025
dc.date.none.fl_str_mv 2025-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/274434
Shevchenko, Victoria; Benn, R. Austin; Scholz, Robert; Wei, Wei; Pallavicini, Carla; et al.; A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity; Nature; Scientific Reports; 15; 1; 1-2025; 1-14
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/274434
identifier_str_mv Shevchenko, Victoria; Benn, R. Austin; Scholz, Robert; Wei, Wei; Pallavicini, Carla; et al.; A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity; Nature; Scientific Reports; 15; 1; 1-2025; 1-14
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-024-84152-2
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-024-84152-2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature
publisher.none.fl_str_mv Nature
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852335649663746048
score 12.952241