Algebraic functions in Łukasiewicz implication algebras
- Autores
- Campercholi, Miguel Alejandro Carlos; Castaño, Diego Nicolás; Díaz Varela, José Patricio
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article we study algebraic functions in {→, 1}-subreducts of MV-algebras, also known as Łukasiewicz implication algebras. A function is algebraic on an algebra A if it is definable by a conjunction of equations on A. We fully characterize algebraic functions on every Łukasiewicz implication algebra belonging to a finitely generated variety. The main tool to accomplish this is a factorization result describing algebraic functions in a subproduct in terms of the algebraic functions of the factors. We prove a global representation theorem for finite Łukasiewicz implication algebras which extends a similar one already known for Tarski algebras. This result together with the knowledge of algebraic functions allowed us to give a partial description of the lattice of classes axiomatized by sentences of the form ∀∃!∧ p ≈ q within the variety generated by the 3-element chain.
Fil: Campercholi, Miguel Alejandro Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Castaño, Diego Nicolás. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Díaz Varela, José Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina - Materia
-
ALGEBRAIC FUNCTIONS
ALGEBRAICALLY EXPANDABLE CLASSES
UKASIEWICZ IMPLICATION ALGEBRAS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/58361
Ver los metadatos del registro completo
id |
CONICETDig_6216a0706d611a4533daa64374ca993c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/58361 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Algebraic functions in Łukasiewicz implication algebrasCampercholi, Miguel Alejandro CarlosCastaño, Diego NicolásDíaz Varela, José PatricioALGEBRAIC FUNCTIONSALGEBRAICALLY EXPANDABLE CLASSESUKASIEWICZ IMPLICATION ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we study algebraic functions in {→, 1}-subreducts of MV-algebras, also known as Łukasiewicz implication algebras. A function is algebraic on an algebra A if it is definable by a conjunction of equations on A. We fully characterize algebraic functions on every Łukasiewicz implication algebra belonging to a finitely generated variety. The main tool to accomplish this is a factorization result describing algebraic functions in a subproduct in terms of the algebraic functions of the factors. We prove a global representation theorem for finite Łukasiewicz implication algebras which extends a similar one already known for Tarski algebras. This result together with the knowledge of algebraic functions allowed us to give a partial description of the lattice of classes axiomatized by sentences of the form ∀∃!∧ p ≈ q within the variety generated by the 3-element chain.Fil: Campercholi, Miguel Alejandro Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Castaño, Diego Nicolás. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Díaz Varela, José Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaWorld Scientific2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58361Campercholi, Miguel Alejandro Carlos; Castaño, Diego Nicolás; Díaz Varela, José Patricio; Algebraic functions in Łukasiewicz implication algebras; World Scientific; International Journal of Algebra and Computation; 26; 2; 3-2016; 223-2470218-1967CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0218196716500119info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218196716500119info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:02Zoai:ri.conicet.gov.ar:11336/58361instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:02.983CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Algebraic functions in Łukasiewicz implication algebras |
title |
Algebraic functions in Łukasiewicz implication algebras |
spellingShingle |
Algebraic functions in Łukasiewicz implication algebras Campercholi, Miguel Alejandro Carlos ALGEBRAIC FUNCTIONS ALGEBRAICALLY EXPANDABLE CLASSES UKASIEWICZ IMPLICATION ALGEBRAS |
title_short |
Algebraic functions in Łukasiewicz implication algebras |
title_full |
Algebraic functions in Łukasiewicz implication algebras |
title_fullStr |
Algebraic functions in Łukasiewicz implication algebras |
title_full_unstemmed |
Algebraic functions in Łukasiewicz implication algebras |
title_sort |
Algebraic functions in Łukasiewicz implication algebras |
dc.creator.none.fl_str_mv |
Campercholi, Miguel Alejandro Carlos Castaño, Diego Nicolás Díaz Varela, José Patricio |
author |
Campercholi, Miguel Alejandro Carlos |
author_facet |
Campercholi, Miguel Alejandro Carlos Castaño, Diego Nicolás Díaz Varela, José Patricio |
author_role |
author |
author2 |
Castaño, Diego Nicolás Díaz Varela, José Patricio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ALGEBRAIC FUNCTIONS ALGEBRAICALLY EXPANDABLE CLASSES UKASIEWICZ IMPLICATION ALGEBRAS |
topic |
ALGEBRAIC FUNCTIONS ALGEBRAICALLY EXPANDABLE CLASSES UKASIEWICZ IMPLICATION ALGEBRAS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this article we study algebraic functions in {→, 1}-subreducts of MV-algebras, also known as Łukasiewicz implication algebras. A function is algebraic on an algebra A if it is definable by a conjunction of equations on A. We fully characterize algebraic functions on every Łukasiewicz implication algebra belonging to a finitely generated variety. The main tool to accomplish this is a factorization result describing algebraic functions in a subproduct in terms of the algebraic functions of the factors. We prove a global representation theorem for finite Łukasiewicz implication algebras which extends a similar one already known for Tarski algebras. This result together with the knowledge of algebraic functions allowed us to give a partial description of the lattice of classes axiomatized by sentences of the form ∀∃!∧ p ≈ q within the variety generated by the 3-element chain. Fil: Campercholi, Miguel Alejandro Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Castaño, Diego Nicolás. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Díaz Varela, José Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina |
description |
In this article we study algebraic functions in {→, 1}-subreducts of MV-algebras, also known as Łukasiewicz implication algebras. A function is algebraic on an algebra A if it is definable by a conjunction of equations on A. We fully characterize algebraic functions on every Łukasiewicz implication algebra belonging to a finitely generated variety. The main tool to accomplish this is a factorization result describing algebraic functions in a subproduct in terms of the algebraic functions of the factors. We prove a global representation theorem for finite Łukasiewicz implication algebras which extends a similar one already known for Tarski algebras. This result together with the knowledge of algebraic functions allowed us to give a partial description of the lattice of classes axiomatized by sentences of the form ∀∃!∧ p ≈ q within the variety generated by the 3-element chain. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/58361 Campercholi, Miguel Alejandro Carlos; Castaño, Diego Nicolás; Díaz Varela, José Patricio; Algebraic functions in Łukasiewicz implication algebras; World Scientific; International Journal of Algebra and Computation; 26; 2; 3-2016; 223-247 0218-1967 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/58361 |
identifier_str_mv |
Campercholi, Miguel Alejandro Carlos; Castaño, Diego Nicolás; Díaz Varela, José Patricio; Algebraic functions in Łukasiewicz implication algebras; World Scientific; International Journal of Algebra and Computation; 26; 2; 3-2016; 223-247 0218-1967 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0218196716500119 info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218196716500119 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269672892792832 |
score |
13.13397 |