Lukasiewicz Implication Prealgebras

Autores
Figallo, Aldo Victorio; Pelaitay, Gustavo Andrés
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we revise the Lukasiewicz implication prealgebras which we will call Lukasiewicz I−prealgebras to sum up. They were used by Antonio Jes´us Rodr´ıguez Salas on his doctoral thesis under the name of Sales prealgebras. These structures are a natural generalization of the notion of I−prealgebras, introduced by A. Monteiro in 1968 aiming to study using algebraic techniques the {→}-fragment of the three-valued Lukasiewicz propositional calculus. The importance of Lukasiewicz I−prealgebras focuses on the fact that from these structures we can directly prove that Lindembaun-Tarski algebra in the {→}- fragment of the infinite-valued Lukasiewicz implication propositional calculus is a Lukasiewicz residuation BCK-algebra in the sense of Berman and Blok [1]. This last result is indicated without a proof on Komori’s paper ([8]) and it is suggested on his general lines on the Rodriguez Salas thesis.
Fil: Figallo, Aldo Victorio. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina
Fil: Pelaitay, Gustavo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina
Materia
LUKASIEWICZ IMPLICATION PREALGEBRAS
I-PREALGEBRAS
LUKASIEWICZ RESIDUATION BCK-ALGEBRAS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/253433

id CONICETDig_464bfe3c25f7b9660529826c960eb6ff
oai_identifier_str oai:ri.conicet.gov.ar:11336/253433
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Lukasiewicz Implication PrealgebrasFigallo, Aldo VictorioPelaitay, Gustavo AndrésLUKASIEWICZ IMPLICATION PREALGEBRASI-PREALGEBRASLUKASIEWICZ RESIDUATION BCK-ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we revise the Lukasiewicz implication prealgebras which we will call Lukasiewicz I−prealgebras to sum up. They were used by Antonio Jes´us Rodr´ıguez Salas on his doctoral thesis under the name of Sales prealgebras. These structures are a natural generalization of the notion of I−prealgebras, introduced by A. Monteiro in 1968 aiming to study using algebraic techniques the {→}-fragment of the three-valued Lukasiewicz propositional calculus. The importance of Lukasiewicz I−prealgebras focuses on the fact that from these structures we can directly prove that Lindembaun-Tarski algebra in the {→}- fragment of the infinite-valued Lukasiewicz implication propositional calculus is a Lukasiewicz residuation BCK-algebra in the sense of Berman and Blok [1]. This last result is indicated without a proof on Komori’s paper ([8]) and it is suggested on his general lines on the Rodriguez Salas thesis.Fil: Figallo, Aldo Victorio. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; ArgentinaFil: Pelaitay, Gustavo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; ArgentinaUniversity of Craiova2017-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/253433Figallo, Aldo Victorio; Pelaitay, Gustavo Andrés; Lukasiewicz Implication Prealgebras; University of Craiova; Analele Universităţii din Craiova. Seria matematică, informatică; 44; 1; 6-2017; 115-1251223-69342246-9958CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://inf.ucv.ro/~ami/index.php/ami/article/view/815info:eu-repo/semantics/altIdentifier/doi/10.52846/ami.v44i1.815info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:36:38Zoai:ri.conicet.gov.ar:11336/253433instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:36:38.465CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Lukasiewicz Implication Prealgebras
title Lukasiewicz Implication Prealgebras
spellingShingle Lukasiewicz Implication Prealgebras
Figallo, Aldo Victorio
LUKASIEWICZ IMPLICATION PREALGEBRAS
I-PREALGEBRAS
LUKASIEWICZ RESIDUATION BCK-ALGEBRAS
title_short Lukasiewicz Implication Prealgebras
title_full Lukasiewicz Implication Prealgebras
title_fullStr Lukasiewicz Implication Prealgebras
title_full_unstemmed Lukasiewicz Implication Prealgebras
title_sort Lukasiewicz Implication Prealgebras
dc.creator.none.fl_str_mv Figallo, Aldo Victorio
Pelaitay, Gustavo Andrés
author Figallo, Aldo Victorio
author_facet Figallo, Aldo Victorio
Pelaitay, Gustavo Andrés
author_role author
author2 Pelaitay, Gustavo Andrés
author2_role author
dc.subject.none.fl_str_mv LUKASIEWICZ IMPLICATION PREALGEBRAS
I-PREALGEBRAS
LUKASIEWICZ RESIDUATION BCK-ALGEBRAS
topic LUKASIEWICZ IMPLICATION PREALGEBRAS
I-PREALGEBRAS
LUKASIEWICZ RESIDUATION BCK-ALGEBRAS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we revise the Lukasiewicz implication prealgebras which we will call Lukasiewicz I−prealgebras to sum up. They were used by Antonio Jes´us Rodr´ıguez Salas on his doctoral thesis under the name of Sales prealgebras. These structures are a natural generalization of the notion of I−prealgebras, introduced by A. Monteiro in 1968 aiming to study using algebraic techniques the {→}-fragment of the three-valued Lukasiewicz propositional calculus. The importance of Lukasiewicz I−prealgebras focuses on the fact that from these structures we can directly prove that Lindembaun-Tarski algebra in the {→}- fragment of the infinite-valued Lukasiewicz implication propositional calculus is a Lukasiewicz residuation BCK-algebra in the sense of Berman and Blok [1]. This last result is indicated without a proof on Komori’s paper ([8]) and it is suggested on his general lines on the Rodriguez Salas thesis.
Fil: Figallo, Aldo Victorio. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina
Fil: Pelaitay, Gustavo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina
description In this paper we revise the Lukasiewicz implication prealgebras which we will call Lukasiewicz I−prealgebras to sum up. They were used by Antonio Jes´us Rodr´ıguez Salas on his doctoral thesis under the name of Sales prealgebras. These structures are a natural generalization of the notion of I−prealgebras, introduced by A. Monteiro in 1968 aiming to study using algebraic techniques the {→}-fragment of the three-valued Lukasiewicz propositional calculus. The importance of Lukasiewicz I−prealgebras focuses on the fact that from these structures we can directly prove that Lindembaun-Tarski algebra in the {→}- fragment of the infinite-valued Lukasiewicz implication propositional calculus is a Lukasiewicz residuation BCK-algebra in the sense of Berman and Blok [1]. This last result is indicated without a proof on Komori’s paper ([8]) and it is suggested on his general lines on the Rodriguez Salas thesis.
publishDate 2017
dc.date.none.fl_str_mv 2017-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/253433
Figallo, Aldo Victorio; Pelaitay, Gustavo Andrés; Lukasiewicz Implication Prealgebras; University of Craiova; Analele Universităţii din Craiova. Seria matematică, informatică; 44; 1; 6-2017; 115-125
1223-6934
2246-9958
CONICET Digital
CONICET
url http://hdl.handle.net/11336/253433
identifier_str_mv Figallo, Aldo Victorio; Pelaitay, Gustavo Andrés; Lukasiewicz Implication Prealgebras; University of Craiova; Analele Universităţii din Craiova. Seria matematică, informatică; 44; 1; 6-2017; 115-125
1223-6934
2246-9958
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://inf.ucv.ro/~ami/index.php/ami/article/view/815
info:eu-repo/semantics/altIdentifier/doi/10.52846/ami.v44i1.815
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv University of Craiova
publisher.none.fl_str_mv University of Craiova
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082833158766592
score 13.22299