Lukasiewicz Implication Prealgebras
- Autores
- Figallo, Aldo Victorio; Pelaitay, Gustavo Andrés
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we revise the Lukasiewicz implication prealgebras which we will call Lukasiewicz I−prealgebras to sum up. They were used by Antonio Jes´us Rodr´ıguez Salas on his doctoral thesis under the name of Sales prealgebras. These structures are a natural generalization of the notion of I−prealgebras, introduced by A. Monteiro in 1968 aiming to study using algebraic techniques the {→}-fragment of the three-valued Lukasiewicz propositional calculus. The importance of Lukasiewicz I−prealgebras focuses on the fact that from these structures we can directly prove that Lindembaun-Tarski algebra in the {→}- fragment of the infinite-valued Lukasiewicz implication propositional calculus is a Lukasiewicz residuation BCK-algebra in the sense of Berman and Blok [1]. This last result is indicated without a proof on Komori’s paper ([8]) and it is suggested on his general lines on the Rodriguez Salas thesis.
Fil: Figallo, Aldo Victorio. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina
Fil: Pelaitay, Gustavo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina - Materia
-
LUKASIEWICZ IMPLICATION PREALGEBRAS
I-PREALGEBRAS
LUKASIEWICZ RESIDUATION BCK-ALGEBRAS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/253433
Ver los metadatos del registro completo
id |
CONICETDig_464bfe3c25f7b9660529826c960eb6ff |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/253433 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Lukasiewicz Implication PrealgebrasFigallo, Aldo VictorioPelaitay, Gustavo AndrésLUKASIEWICZ IMPLICATION PREALGEBRASI-PREALGEBRASLUKASIEWICZ RESIDUATION BCK-ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we revise the Lukasiewicz implication prealgebras which we will call Lukasiewicz I−prealgebras to sum up. They were used by Antonio Jes´us Rodr´ıguez Salas on his doctoral thesis under the name of Sales prealgebras. These structures are a natural generalization of the notion of I−prealgebras, introduced by A. Monteiro in 1968 aiming to study using algebraic techniques the {→}-fragment of the three-valued Lukasiewicz propositional calculus. The importance of Lukasiewicz I−prealgebras focuses on the fact that from these structures we can directly prove that Lindembaun-Tarski algebra in the {→}- fragment of the infinite-valued Lukasiewicz implication propositional calculus is a Lukasiewicz residuation BCK-algebra in the sense of Berman and Blok [1]. This last result is indicated without a proof on Komori’s paper ([8]) and it is suggested on his general lines on the Rodriguez Salas thesis.Fil: Figallo, Aldo Victorio. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; ArgentinaFil: Pelaitay, Gustavo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; ArgentinaUniversity of Craiova2017-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/253433Figallo, Aldo Victorio; Pelaitay, Gustavo Andrés; Lukasiewicz Implication Prealgebras; University of Craiova; Analele Universităţii din Craiova. Seria matematică, informatică; 44; 1; 6-2017; 115-1251223-69342246-9958CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://inf.ucv.ro/~ami/index.php/ami/article/view/815info:eu-repo/semantics/altIdentifier/doi/10.52846/ami.v44i1.815info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:36:38Zoai:ri.conicet.gov.ar:11336/253433instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:36:38.465CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Lukasiewicz Implication Prealgebras |
title |
Lukasiewicz Implication Prealgebras |
spellingShingle |
Lukasiewicz Implication Prealgebras Figallo, Aldo Victorio LUKASIEWICZ IMPLICATION PREALGEBRAS I-PREALGEBRAS LUKASIEWICZ RESIDUATION BCK-ALGEBRAS |
title_short |
Lukasiewicz Implication Prealgebras |
title_full |
Lukasiewicz Implication Prealgebras |
title_fullStr |
Lukasiewicz Implication Prealgebras |
title_full_unstemmed |
Lukasiewicz Implication Prealgebras |
title_sort |
Lukasiewicz Implication Prealgebras |
dc.creator.none.fl_str_mv |
Figallo, Aldo Victorio Pelaitay, Gustavo Andrés |
author |
Figallo, Aldo Victorio |
author_facet |
Figallo, Aldo Victorio Pelaitay, Gustavo Andrés |
author_role |
author |
author2 |
Pelaitay, Gustavo Andrés |
author2_role |
author |
dc.subject.none.fl_str_mv |
LUKASIEWICZ IMPLICATION PREALGEBRAS I-PREALGEBRAS LUKASIEWICZ RESIDUATION BCK-ALGEBRAS |
topic |
LUKASIEWICZ IMPLICATION PREALGEBRAS I-PREALGEBRAS LUKASIEWICZ RESIDUATION BCK-ALGEBRAS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we revise the Lukasiewicz implication prealgebras which we will call Lukasiewicz I−prealgebras to sum up. They were used by Antonio Jes´us Rodr´ıguez Salas on his doctoral thesis under the name of Sales prealgebras. These structures are a natural generalization of the notion of I−prealgebras, introduced by A. Monteiro in 1968 aiming to study using algebraic techniques the {→}-fragment of the three-valued Lukasiewicz propositional calculus. The importance of Lukasiewicz I−prealgebras focuses on the fact that from these structures we can directly prove that Lindembaun-Tarski algebra in the {→}- fragment of the infinite-valued Lukasiewicz implication propositional calculus is a Lukasiewicz residuation BCK-algebra in the sense of Berman and Blok [1]. This last result is indicated without a proof on Komori’s paper ([8]) and it is suggested on his general lines on the Rodriguez Salas thesis. Fil: Figallo, Aldo Victorio. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina Fil: Pelaitay, Gustavo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina |
description |
In this paper we revise the Lukasiewicz implication prealgebras which we will call Lukasiewicz I−prealgebras to sum up. They were used by Antonio Jes´us Rodr´ıguez Salas on his doctoral thesis under the name of Sales prealgebras. These structures are a natural generalization of the notion of I−prealgebras, introduced by A. Monteiro in 1968 aiming to study using algebraic techniques the {→}-fragment of the three-valued Lukasiewicz propositional calculus. The importance of Lukasiewicz I−prealgebras focuses on the fact that from these structures we can directly prove that Lindembaun-Tarski algebra in the {→}- fragment of the infinite-valued Lukasiewicz implication propositional calculus is a Lukasiewicz residuation BCK-algebra in the sense of Berman and Blok [1]. This last result is indicated without a proof on Komori’s paper ([8]) and it is suggested on his general lines on the Rodriguez Salas thesis. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/253433 Figallo, Aldo Victorio; Pelaitay, Gustavo Andrés; Lukasiewicz Implication Prealgebras; University of Craiova; Analele Universităţii din Craiova. Seria matematică, informatică; 44; 1; 6-2017; 115-125 1223-6934 2246-9958 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/253433 |
identifier_str_mv |
Figallo, Aldo Victorio; Pelaitay, Gustavo Andrés; Lukasiewicz Implication Prealgebras; University of Craiova; Analele Universităţii din Craiova. Seria matematică, informatică; 44; 1; 6-2017; 115-125 1223-6934 2246-9958 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://inf.ucv.ro/~ami/index.php/ami/article/view/815 info:eu-repo/semantics/altIdentifier/doi/10.52846/ami.v44i1.815 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
University of Craiova |
publisher.none.fl_str_mv |
University of Craiova |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082833158766592 |
score |
13.22299 |