Geographical origin identification of mandarin fruits by analyzing fingerprint signatures based on multielemental composition
- Autores
- Hidalgo, Melisa Jazmin; Gaiad, José Emilio; Goicoechea, Hector Casimiro; Mendoza, Alberto; Pérez Rodríguez, Michael; Pellerano, Roberto Gerardo
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given rising traders and consumers concerns, the global food industry is increasingly demanding authentic and traceable products. Consequently, there is a heightened focus on verifying geographical authenticity as food quality assurance. In this work, we assessed pattern recognition approaches based on elemental predictors to discern the provenance of mandarin juices from three distinct citrus-producing zones located in the Northeast region of Argentina. A total of 202 samples originating from two cultivars were prepared through microwave-assisted acid digestion and analyzed by microwave plasma atomic emission spectroscopy (MP-AES). Later, we applied linear discriminant analysis (LDA), k-nearest neighbor (k-NN), support vector machine (SVM), and random forest (RF) to the element data obtained. SVM accomplished the best classification performance with a 95.1% success rate, for which it was selected for citrus samples authentication. The proposed method highlights the capability of mineral profiles in accurately identifying the genuine origin of mandarin juices. By implementing this model in the food supply chain, it can prevent mislabeling fraud, thereby contributing to consumer protection.
Fil: Hidalgo, Melisa Jazmin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Gaiad, José Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina
Fil: Mendoza, Alberto. Instituto Tecnologico de Monterrey.; México
Fil: Pérez Rodríguez, Michael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. Instituto Tecnologico de Monterrey.; México
Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina - Materia
-
ELEMENT PROFILES
MANDARIN JUICES
MP-AES, GEOGRAPHICAL ORIGIN AUTHENTICATION
PREDICTIVE MODELING
SUPPORT VECTOR MACHINE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/224882
Ver los metadatos del registro completo
id |
CONICETDig_60491f796614749f9f18185eb4812d7e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/224882 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Geographical origin identification of mandarin fruits by analyzing fingerprint signatures based on multielemental compositionHidalgo, Melisa JazminGaiad, José EmilioGoicoechea, Hector CasimiroMendoza, AlbertoPérez Rodríguez, MichaelPellerano, Roberto GerardoELEMENT PROFILESMANDARIN JUICESMP-AES, GEOGRAPHICAL ORIGIN AUTHENTICATIONPREDICTIVE MODELINGSUPPORT VECTOR MACHINEhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Given rising traders and consumers concerns, the global food industry is increasingly demanding authentic and traceable products. Consequently, there is a heightened focus on verifying geographical authenticity as food quality assurance. In this work, we assessed pattern recognition approaches based on elemental predictors to discern the provenance of mandarin juices from three distinct citrus-producing zones located in the Northeast region of Argentina. A total of 202 samples originating from two cultivars were prepared through microwave-assisted acid digestion and analyzed by microwave plasma atomic emission spectroscopy (MP-AES). Later, we applied linear discriminant analysis (LDA), k-nearest neighbor (k-NN), support vector machine (SVM), and random forest (RF) to the element data obtained. SVM accomplished the best classification performance with a 95.1% success rate, for which it was selected for citrus samples authentication. The proposed method highlights the capability of mineral profiles in accurately identifying the genuine origin of mandarin juices. By implementing this model in the food supply chain, it can prevent mislabeling fraud, thereby contributing to consumer protection.Fil: Hidalgo, Melisa Jazmin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Gaiad, José Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; ArgentinaFil: Mendoza, Alberto. Instituto Tecnologico de Monterrey.; MéxicoFil: Pérez Rodríguez, Michael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. Instituto Tecnologico de Monterrey.; MéxicoFil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaElsevier2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/224882Hidalgo, Melisa Jazmin; Gaiad, José Emilio; Goicoechea, Hector Casimiro; Mendoza, Alberto; Pérez Rodríguez, Michael; et al.; Geographical origin identification of mandarin fruits by analyzing fingerprint signatures based on multielemental composition; Elsevier; Food Chemistry: X; 20; 12-2023; 1-82590-1575CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2590157523004832info:eu-repo/semantics/altIdentifier/doi/10.1016/j.fochx.2023.101040info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:25:03Zoai:ri.conicet.gov.ar:11336/224882instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:25:04.148CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Geographical origin identification of mandarin fruits by analyzing fingerprint signatures based on multielemental composition |
title |
Geographical origin identification of mandarin fruits by analyzing fingerprint signatures based on multielemental composition |
spellingShingle |
Geographical origin identification of mandarin fruits by analyzing fingerprint signatures based on multielemental composition Hidalgo, Melisa Jazmin ELEMENT PROFILES MANDARIN JUICES MP-AES, GEOGRAPHICAL ORIGIN AUTHENTICATION PREDICTIVE MODELING SUPPORT VECTOR MACHINE |
title_short |
Geographical origin identification of mandarin fruits by analyzing fingerprint signatures based on multielemental composition |
title_full |
Geographical origin identification of mandarin fruits by analyzing fingerprint signatures based on multielemental composition |
title_fullStr |
Geographical origin identification of mandarin fruits by analyzing fingerprint signatures based on multielemental composition |
title_full_unstemmed |
Geographical origin identification of mandarin fruits by analyzing fingerprint signatures based on multielemental composition |
title_sort |
Geographical origin identification of mandarin fruits by analyzing fingerprint signatures based on multielemental composition |
dc.creator.none.fl_str_mv |
Hidalgo, Melisa Jazmin Gaiad, José Emilio Goicoechea, Hector Casimiro Mendoza, Alberto Pérez Rodríguez, Michael Pellerano, Roberto Gerardo |
author |
Hidalgo, Melisa Jazmin |
author_facet |
Hidalgo, Melisa Jazmin Gaiad, José Emilio Goicoechea, Hector Casimiro Mendoza, Alberto Pérez Rodríguez, Michael Pellerano, Roberto Gerardo |
author_role |
author |
author2 |
Gaiad, José Emilio Goicoechea, Hector Casimiro Mendoza, Alberto Pérez Rodríguez, Michael Pellerano, Roberto Gerardo |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
ELEMENT PROFILES MANDARIN JUICES MP-AES, GEOGRAPHICAL ORIGIN AUTHENTICATION PREDICTIVE MODELING SUPPORT VECTOR MACHINE |
topic |
ELEMENT PROFILES MANDARIN JUICES MP-AES, GEOGRAPHICAL ORIGIN AUTHENTICATION PREDICTIVE MODELING SUPPORT VECTOR MACHINE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given rising traders and consumers concerns, the global food industry is increasingly demanding authentic and traceable products. Consequently, there is a heightened focus on verifying geographical authenticity as food quality assurance. In this work, we assessed pattern recognition approaches based on elemental predictors to discern the provenance of mandarin juices from three distinct citrus-producing zones located in the Northeast region of Argentina. A total of 202 samples originating from two cultivars were prepared through microwave-assisted acid digestion and analyzed by microwave plasma atomic emission spectroscopy (MP-AES). Later, we applied linear discriminant analysis (LDA), k-nearest neighbor (k-NN), support vector machine (SVM), and random forest (RF) to the element data obtained. SVM accomplished the best classification performance with a 95.1% success rate, for which it was selected for citrus samples authentication. The proposed method highlights the capability of mineral profiles in accurately identifying the genuine origin of mandarin juices. By implementing this model in the food supply chain, it can prevent mislabeling fraud, thereby contributing to consumer protection. Fil: Hidalgo, Melisa Jazmin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina Fil: Gaiad, José Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina Fil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina Fil: Mendoza, Alberto. Instituto Tecnologico de Monterrey.; México Fil: Pérez Rodríguez, Michael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. Instituto Tecnologico de Monterrey.; México Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina |
description |
Given rising traders and consumers concerns, the global food industry is increasingly demanding authentic and traceable products. Consequently, there is a heightened focus on verifying geographical authenticity as food quality assurance. In this work, we assessed pattern recognition approaches based on elemental predictors to discern the provenance of mandarin juices from three distinct citrus-producing zones located in the Northeast region of Argentina. A total of 202 samples originating from two cultivars were prepared through microwave-assisted acid digestion and analyzed by microwave plasma atomic emission spectroscopy (MP-AES). Later, we applied linear discriminant analysis (LDA), k-nearest neighbor (k-NN), support vector machine (SVM), and random forest (RF) to the element data obtained. SVM accomplished the best classification performance with a 95.1% success rate, for which it was selected for citrus samples authentication. The proposed method highlights the capability of mineral profiles in accurately identifying the genuine origin of mandarin juices. By implementing this model in the food supply chain, it can prevent mislabeling fraud, thereby contributing to consumer protection. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/224882 Hidalgo, Melisa Jazmin; Gaiad, José Emilio; Goicoechea, Hector Casimiro; Mendoza, Alberto; Pérez Rodríguez, Michael; et al.; Geographical origin identification of mandarin fruits by analyzing fingerprint signatures based on multielemental composition; Elsevier; Food Chemistry: X; 20; 12-2023; 1-8 2590-1575 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/224882 |
identifier_str_mv |
Hidalgo, Melisa Jazmin; Gaiad, José Emilio; Goicoechea, Hector Casimiro; Mendoza, Alberto; Pérez Rodríguez, Michael; et al.; Geographical origin identification of mandarin fruits by analyzing fingerprint signatures based on multielemental composition; Elsevier; Food Chemistry: X; 20; 12-2023; 1-8 2590-1575 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2590157523004832 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.fochx.2023.101040 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082680192499712 |
score |
13.22299 |