Elemental tracer determination and modeling for geographical origin designation of sweet oranges
- Autores
- Hidalgo, Melisa Jazmin; Pérez Rodríguez, Michael; Gaiad, José Emilio; Goicoechea, Hector Casimiro; Mendoza, Alberto; Pellerano, Roberto Gerardo
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Sweet oranges have long been an integral part of global health and culinary practices, offering a wealth of nutrients and bioactive compounds. Ensuring the authenticity of these citrus fruits is essential for maintaining consumer confidence, promoting transparency in sourcing, and protecting producers´ reputations in the marketplace. In this study, we explored the feasibility of using multi-element profiling combined with pattern recognition algorithms to trace the origin of sweet orange samples. To achieve this, we employed an optimized microwave plasma atomic emission spectroscopy (MP-AES) method to analyze the elemental composition (Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sr, and Zn) of 183 orange samples from four production regions in northeastern Argentina. Support vector machine (SVM), random forest (RF), and gradient boosting tree (GBT) models were then built using the collected data to identify elemental tracer´s indicative of origin. Based on a comprehensive evaluation of overall accuracy, receiver operating characteristic (ROC) curves, and area under the curve (AUC), the GBT model demonstrated the best classification performance, achieving a 96.5 % correct prediction rate on test samples, as confirmed by the ROC curve (AUC = 0.973). Consequently, this approach provides compelling evidence for the potential utility of MP-AES combined with supervised modeling to determine the geographic origin of sweet oranges produced in Argentina, thereby contributing to consumer protection against fraud.
Fil: Hidalgo, Melisa Jazmin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Pérez Rodríguez, Michael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Gaiad, José Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Mendoza, Alberto. Instituto Tecnológico de Monterrey; México
Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina - Materia
-
MP-AES
Classification modeling
Sweet orange fruits
Geographical origin designation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/244573
Ver los metadatos del registro completo
id |
CONICETDig_389ed8a1c07a6273030e96f6f721a213 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/244573 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Elemental tracer determination and modeling for geographical origin designation of sweet orangesHidalgo, Melisa JazminPérez Rodríguez, MichaelGaiad, José EmilioGoicoechea, Hector CasimiroMendoza, AlbertoPellerano, Roberto GerardoMP-AESClassification modelingSweet orange fruitsGeographical origin designationhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Sweet oranges have long been an integral part of global health and culinary practices, offering a wealth of nutrients and bioactive compounds. Ensuring the authenticity of these citrus fruits is essential for maintaining consumer confidence, promoting transparency in sourcing, and protecting producers´ reputations in the marketplace. In this study, we explored the feasibility of using multi-element profiling combined with pattern recognition algorithms to trace the origin of sweet orange samples. To achieve this, we employed an optimized microwave plasma atomic emission spectroscopy (MP-AES) method to analyze the elemental composition (Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sr, and Zn) of 183 orange samples from four production regions in northeastern Argentina. Support vector machine (SVM), random forest (RF), and gradient boosting tree (GBT) models were then built using the collected data to identify elemental tracer´s indicative of origin. Based on a comprehensive evaluation of overall accuracy, receiver operating characteristic (ROC) curves, and area under the curve (AUC), the GBT model demonstrated the best classification performance, achieving a 96.5 % correct prediction rate on test samples, as confirmed by the ROC curve (AUC = 0.973). Consequently, this approach provides compelling evidence for the potential utility of MP-AES combined with supervised modeling to determine the geographic origin of sweet oranges produced in Argentina, thereby contributing to consumer protection against fraud.Fil: Hidalgo, Melisa Jazmin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Pérez Rodríguez, Michael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Gaiad, José Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Mendoza, Alberto. Instituto Tecnológico de Monterrey; MéxicoFil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaElsevier2024-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/244573Hidalgo, Melisa Jazmin; Pérez Rodríguez, Michael; Gaiad, José Emilio; Goicoechea, Hector Casimiro; Mendoza, Alberto; et al.; Elemental tracer determination and modeling for geographical origin designation of sweet oranges; Elsevier; Journal of Agriculture and Food Research; 18; 9-2024; 1-82666-1543CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S266615432400423Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jafr.2024.101386info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:58Zoai:ri.conicet.gov.ar:11336/244573instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:59.225CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Elemental tracer determination and modeling for geographical origin designation of sweet oranges |
title |
Elemental tracer determination and modeling for geographical origin designation of sweet oranges |
spellingShingle |
Elemental tracer determination and modeling for geographical origin designation of sweet oranges Hidalgo, Melisa Jazmin MP-AES Classification modeling Sweet orange fruits Geographical origin designation |
title_short |
Elemental tracer determination and modeling for geographical origin designation of sweet oranges |
title_full |
Elemental tracer determination and modeling for geographical origin designation of sweet oranges |
title_fullStr |
Elemental tracer determination and modeling for geographical origin designation of sweet oranges |
title_full_unstemmed |
Elemental tracer determination and modeling for geographical origin designation of sweet oranges |
title_sort |
Elemental tracer determination and modeling for geographical origin designation of sweet oranges |
dc.creator.none.fl_str_mv |
Hidalgo, Melisa Jazmin Pérez Rodríguez, Michael Gaiad, José Emilio Goicoechea, Hector Casimiro Mendoza, Alberto Pellerano, Roberto Gerardo |
author |
Hidalgo, Melisa Jazmin |
author_facet |
Hidalgo, Melisa Jazmin Pérez Rodríguez, Michael Gaiad, José Emilio Goicoechea, Hector Casimiro Mendoza, Alberto Pellerano, Roberto Gerardo |
author_role |
author |
author2 |
Pérez Rodríguez, Michael Gaiad, José Emilio Goicoechea, Hector Casimiro Mendoza, Alberto Pellerano, Roberto Gerardo |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
MP-AES Classification modeling Sweet orange fruits Geographical origin designation |
topic |
MP-AES Classification modeling Sweet orange fruits Geographical origin designation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Sweet oranges have long been an integral part of global health and culinary practices, offering a wealth of nutrients and bioactive compounds. Ensuring the authenticity of these citrus fruits is essential for maintaining consumer confidence, promoting transparency in sourcing, and protecting producers´ reputations in the marketplace. In this study, we explored the feasibility of using multi-element profiling combined with pattern recognition algorithms to trace the origin of sweet orange samples. To achieve this, we employed an optimized microwave plasma atomic emission spectroscopy (MP-AES) method to analyze the elemental composition (Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sr, and Zn) of 183 orange samples from four production regions in northeastern Argentina. Support vector machine (SVM), random forest (RF), and gradient boosting tree (GBT) models were then built using the collected data to identify elemental tracer´s indicative of origin. Based on a comprehensive evaluation of overall accuracy, receiver operating characteristic (ROC) curves, and area under the curve (AUC), the GBT model demonstrated the best classification performance, achieving a 96.5 % correct prediction rate on test samples, as confirmed by the ROC curve (AUC = 0.973). Consequently, this approach provides compelling evidence for the potential utility of MP-AES combined with supervised modeling to determine the geographic origin of sweet oranges produced in Argentina, thereby contributing to consumer protection against fraud. Fil: Hidalgo, Melisa Jazmin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina Fil: Pérez Rodríguez, Michael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina Fil: Gaiad, José Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina Fil: Mendoza, Alberto. Instituto Tecnológico de Monterrey; México Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina |
description |
Sweet oranges have long been an integral part of global health and culinary practices, offering a wealth of nutrients and bioactive compounds. Ensuring the authenticity of these citrus fruits is essential for maintaining consumer confidence, promoting transparency in sourcing, and protecting producers´ reputations in the marketplace. In this study, we explored the feasibility of using multi-element profiling combined with pattern recognition algorithms to trace the origin of sweet orange samples. To achieve this, we employed an optimized microwave plasma atomic emission spectroscopy (MP-AES) method to analyze the elemental composition (Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sr, and Zn) of 183 orange samples from four production regions in northeastern Argentina. Support vector machine (SVM), random forest (RF), and gradient boosting tree (GBT) models were then built using the collected data to identify elemental tracer´s indicative of origin. Based on a comprehensive evaluation of overall accuracy, receiver operating characteristic (ROC) curves, and area under the curve (AUC), the GBT model demonstrated the best classification performance, achieving a 96.5 % correct prediction rate on test samples, as confirmed by the ROC curve (AUC = 0.973). Consequently, this approach provides compelling evidence for the potential utility of MP-AES combined with supervised modeling to determine the geographic origin of sweet oranges produced in Argentina, thereby contributing to consumer protection against fraud. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/244573 Hidalgo, Melisa Jazmin; Pérez Rodríguez, Michael; Gaiad, José Emilio; Goicoechea, Hector Casimiro; Mendoza, Alberto; et al.; Elemental tracer determination and modeling for geographical origin designation of sweet oranges; Elsevier; Journal of Agriculture and Food Research; 18; 9-2024; 1-8 2666-1543 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/244573 |
identifier_str_mv |
Hidalgo, Melisa Jazmin; Pérez Rodríguez, Michael; Gaiad, José Emilio; Goicoechea, Hector Casimiro; Mendoza, Alberto; et al.; Elemental tracer determination and modeling for geographical origin designation of sweet oranges; Elsevier; Journal of Agriculture and Food Research; 18; 9-2024; 1-8 2666-1543 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S266615432400423X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jafr.2024.101386 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268894872469504 |
score |
13.13397 |