Doubly transitive groups and cyclic quandles
- Autores
- Vendramin, Claudio Leandro
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove that for n > 2 there exists a quandle of cyclic type of size n if and only if n is a power of a prime number. This establishes a conjecture of S. Kamada, H. Tamaru and K. Wada. As a corollary, every finite quandle of cyclic type is an Alexander quandle. We also prove that finite doubly transitive quandles are of cyclic type. This establishes a conjecture of H. Tamaru.
Fil: Vendramin, Claudio Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Doubly-Transitive Groups
Finite Quandles
Quandles of Cyclic Type
Two-Point Homogeneous Quandles - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55429
Ver los metadatos del registro completo
id |
CONICETDig_5f8550ba223c97fb686f190527d1f190 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55429 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Doubly transitive groups and cyclic quandlesVendramin, Claudio LeandroDoubly-Transitive GroupsFinite QuandlesQuandles of Cyclic TypeTwo-Point Homogeneous Quandleshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove that for n > 2 there exists a quandle of cyclic type of size n if and only if n is a power of a prime number. This establishes a conjecture of S. Kamada, H. Tamaru and K. Wada. As a corollary, every finite quandle of cyclic type is an Alexander quandle. We also prove that finite doubly transitive quandles are of cyclic type. This establishes a conjecture of H. Tamaru.Fil: Vendramin, Claudio Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaMathematical Society of Japan2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55429Vendramin, Claudio Leandro; Doubly transitive groups and cyclic quandles; Mathematical Society of Japan; Journal Of The Mathematical Society Of Japan; 69; 3; 7-2017; 1051-10570025-5645CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2969/jmsj/06931051info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.jmsj/1499846516info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:20Zoai:ri.conicet.gov.ar:11336/55429instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:20.478CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Doubly transitive groups and cyclic quandles |
title |
Doubly transitive groups and cyclic quandles |
spellingShingle |
Doubly transitive groups and cyclic quandles Vendramin, Claudio Leandro Doubly-Transitive Groups Finite Quandles Quandles of Cyclic Type Two-Point Homogeneous Quandles |
title_short |
Doubly transitive groups and cyclic quandles |
title_full |
Doubly transitive groups and cyclic quandles |
title_fullStr |
Doubly transitive groups and cyclic quandles |
title_full_unstemmed |
Doubly transitive groups and cyclic quandles |
title_sort |
Doubly transitive groups and cyclic quandles |
dc.creator.none.fl_str_mv |
Vendramin, Claudio Leandro |
author |
Vendramin, Claudio Leandro |
author_facet |
Vendramin, Claudio Leandro |
author_role |
author |
dc.subject.none.fl_str_mv |
Doubly-Transitive Groups Finite Quandles Quandles of Cyclic Type Two-Point Homogeneous Quandles |
topic |
Doubly-Transitive Groups Finite Quandles Quandles of Cyclic Type Two-Point Homogeneous Quandles |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove that for n > 2 there exists a quandle of cyclic type of size n if and only if n is a power of a prime number. This establishes a conjecture of S. Kamada, H. Tamaru and K. Wada. As a corollary, every finite quandle of cyclic type is an Alexander quandle. We also prove that finite doubly transitive quandles are of cyclic type. This establishes a conjecture of H. Tamaru. Fil: Vendramin, Claudio Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We prove that for n > 2 there exists a quandle of cyclic type of size n if and only if n is a power of a prime number. This establishes a conjecture of S. Kamada, H. Tamaru and K. Wada. As a corollary, every finite quandle of cyclic type is an Alexander quandle. We also prove that finite doubly transitive quandles are of cyclic type. This establishes a conjecture of H. Tamaru. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55429 Vendramin, Claudio Leandro; Doubly transitive groups and cyclic quandles; Mathematical Society of Japan; Journal Of The Mathematical Society Of Japan; 69; 3; 7-2017; 1051-1057 0025-5645 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55429 |
identifier_str_mv |
Vendramin, Claudio Leandro; Doubly transitive groups and cyclic quandles; Mathematical Society of Japan; Journal Of The Mathematical Society Of Japan; 69; 3; 7-2017; 1051-1057 0025-5645 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.2969/jmsj/06931051 info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.jmsj/1499846516 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Mathematical Society of Japan |
publisher.none.fl_str_mv |
Mathematical Society of Japan |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844612985584091136 |
score |
13.070432 |